Уравнением с разделяющимися переменными
Дифференциальное уравнение первого порядка y' = f(x,y) называется уравнением с разделяющимися переменными, если функцию f(x,y) можно представить в виде произведения двух функций, зависящих только от x и y:
где p(x) и h(y) − непрерывные функции.
Рассматривая производную y' как отношение дифференциалов , перенесем dx в правую часть и разделим уравнение на h(y):
Разумеется, нужно убедиться, что h(y) ≠ 0. Если найдется число x0, при котором h(x0) = 0, то это число будет также являться решением дифференциального уравнения. Деление на h(y) приводит к потере указанного решения.
Обозначив , запишем уравнение в форме:
Теперь переменные разделены и мы можем проинтегрировать дифференциальное уравнение:
где C − постоянная интегрирования.
Вычисляя интегралы, получаем выражение
описывающее общее решение уравнения с разделяющимися переменными.
2.Дифференциальные уравнения с разделенными переменными
Рассмотрим дифференциальное уравнение вида:
f1(x)dx=f2(y)dy, (1)
которое называется уравнением с разделенными переменными.
Пусть найдено некоторое его решение y(x). При подстановке y=y(x) в дифференциальное уравнение (1) оно обратится в тождество и, интегрируя его, имеем
∫f1(x)dx=∫f2(y)dy+C, (2)