Рассмотрим решение задач
Точки пересечения графика функции с осями координат.
С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).
С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда
. То есть точка пересечения с осью OX имеет координаты (
;0):

Рассмотрим решение задач.
1. Постройте график функции
, если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.
В уравнении функции
два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.
а) Из того, что график функции
параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид 
б) Нам осталось найти b. Известно, что график функции
проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:
отсюда b=-10
Таким образом, нам надо построить график функции 
Точка А(-3;2) нам известна, возьмем точку B(0;-10)
Поставим эти точки в координатной плоскости и соединим их прямой:

2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).
Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой
. То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.
Подставим координаты каждой точки в уравнение
и получим систему линейных уравнений.

Вычтем из второго уравнения системы первое, и получим
. Подставим значение k в первое уравнение системы, и получим b=-2.
Итак, уравнение прямой
.