Плазменное упрочнение в солевом растворе NaCO (без оплавления и с оплавлением соответственно)
6. плазменное упрочнение в солевом растворе NaCO с добавкой 20% CО к плазмообразующему аргону (без оплавления)
К комбинированным способам плазменного легирования относятся способы плазменного легирования (твердая фаза + жидкая фаза; твердая фаза + жидкая + газовая фаза и т.д.) рис. 2.46.
Плазменное легирование из жидкой, твердой и газовой фазы
Исследования проводились на стали 20, 45. В качестве жидкой среды использовался водный раствор соли аммония (различной концентрации), газовые среды (азот и пропан, СО2), пасты (углеродосодержащие, азотосодержащие).
Азотирование Проведенные исследования показали, что увеличение концентрации азота в зоне обработки приводит к повышению содержания азота в поверхностных слоях, следствием чего является увеличение глубины слоя и микротвердости, табл. 2.16. Микроструктура слоя после комплексного легирования такая же, как и после простого азотирования из газовой и твердой фазы. Непосредственно на поверхности образуется насыщенная азотом нетравящаяся ε– фаза, за ней переохлажденная γ– фаза, под которой находится азотистый мартенсит.
Нитроцементация. Особенностью комбинированного способа нитроцементации при плазменном упрочнении является повышенная концентрация азота и углерода. Слой наибольшей твердости и глубины получается при комбинации: плазмообразующий газ (азот 100 %) + азотоуглеродосодержащая паста.
Глубина диффузионного слоя на стали 20 составляла 0,6-1,1 мм, микротвердость 11000-12500 Мпа. Микротвердость повышается при увеличении скорости нагрева. Нагрев с большей скоростью уменьшает время, в течении которого азотоуглеродосодержащая паста находится в расплавленном состоянии, что увеличивает концентрацию активных атомов углерода и азота на границе раздела: насыщенная среда - поверхность металла. Однако, концентрации азота и углерода приводит к увеличению остаточного аустенита (от 2,5 до 10 % на стали 20), что снижает микротвердость. Глубина диффузионного слоя на стали 45 составляла 0,65-0,8 мм., а микротвердость 11200 -13000 Мпа. Содержание остаточного аустенита увеличивается при повышении скорости обработки (от 8 до 15 %). Нитроцементированный слой на стали 45 после легирования по структуре аналогичен процессу нитроцементации, описанному выше.
Табл. 2.16.
Марка стали | Вариант легирования | Глубина слоя, мм | Микротвердость, Мпа | |||
Легированного | Общая | |||||
Сталь 20 | 1. Плазмообразующий газ азот (100%) (без оплавления 2. Плазмообразующий газ азот (100%) + 90% водный раствор хлористого аммония (без оплавления) 3. Плазмообразующий газ азот (100%)+90% водный раствор хлористого аммония (с оплавлением) 4. Плазмообразующий газ азот (60%) + аргон (40%) +азотосодержащая паста (с оплавлением) 5. Плазмообразующий газ азот (100%) + 50% водного раствора хлористого аммония +азотосодержащая паста ( с оплавлением) 6. Плазмообразующий газ аргон (100%)+ 50% водного раствора хлористого аммония +азотосодержащая паста (с оплавлением) 7. Плазмообразующий газ аргон (100%)+ азотосодержащая паста (с оплавлением) | 0,3-0,35 0,35-0,55 0,6-0,8 0,6-0,8 0,75-0,1 0,75-0,1 0,6-0,8 | 0,7 0,9 1,8 1,2 | 8100-8200 8300-9400 8800-12000* (пористая поверхность) 7200-8800 9100-11300* (пористая поверхность) 8800-9500 8800-9200 | ||
Эффект «азотного кипения»
Многокомпонентное насыщение (N,С,В,Сг,V,Тi,W,Ni и др.)
Плазмообразующий газ (60 % азота +10% пропана + 30 % аргона) + боросодержащая паста (режим с оплавлением поверхности). В оплавленной зоне на стали 45 ближе к поверхности расположен слой, содержащий бориды ( FеВ,Fе3В), глубиной 10-50 мкм, под ним располагается слой содержащий нитрид Fе2N, карбонитрид Fе2(СN), азотистый мартенсит, остаточный аустенит (10 %) глубина слоя 0,2-0,3 мм, рис. 2.48.
Рис. 2.48.Распределение микротвердости