Задачи оптимизации при управлении качеством
Методы решения задач линейного программирования.Методы решения задач линейного программирования относятся к вычислительной математике, а не к экономике и менеджменту. Однако инженеру, менеджеру и экономисту полезно знать о свойствах интеллектуального инструмента, которым он пользуется.
С ростом мощности компьютеров необходимость применения изощренных математических методов снижается, поскольку во многих случаях время счета перестает быть лимитирующим фактором, оно весьма мало (доли секунд). Поэтому разберем лишь три метода.
Простой перебор. Возьмем некоторый многомерный параллелепипед, в котором лежит многогранник, задаваемый ограничениями. Как его построить? Например, если имеется ограничение типа 2Х1 + 5Х2 ≤ 10, то, очевидно, 0 ≤ Х1 ≤ 10/2 = 5 и 0 ≤ Х2 ≤ 10/5 = 2. Аналогичным образом от линейных ограничений общего вида можно перейти к ограничениям на отдельные переменные. Остается взять максимальные границы по каждой переменной. Если многогранник, задаваемый ограничениями, неограничен, как было в задаче о диете, можно похожим, но несколько более сложным образом выделить его "обращенную" к началу координат часть, содержащую решение, и заключить ее в многомерный параллелепипед.
Проведем перебор точек параллелепипеда с шагом 1/10n последовательно при n=2,3,…, вычисляя значения целевой функции и проверяя выполнение ограничений. Из всех точек, удовлетворяющих ограничениям, возьмем ту, в которой целевая функция максимальна. Решение найдено! (Более строго выражаясь, найдено с точностью до 1/10n.)
Направленный перебор.Начнем с точки, удовлетворяющей ограничениям (ее можно найти простым перебором). Будем последовательно (или случайно – с помощью т.н. метода случайного поиска) менять ее координаты на определенную величину ∆, каждый раз в точку с более высоким значением целевой функции. Если выйдем на плоскость ограничения, будем двигаться по ней (находя одну из координат по уравнению ограничения). Затем движение по ребру (когда два ограничения-неравенства переходят в равенства)… Остановка - в вершине линейного многогранника. Решение найдено! (Более строго выражаясь, найдено с точностью до ∆. Если необходимо, в окрестности найденного решения проводим направленный перебор с шагом ∆/2 , ∆/4 и т.д.)
Симплекс-метод.Этот один из первых специализированных методов оптимизации, нацеленный на решение задач линейного программирования, в то время как методы простого и направленного перебора могут быть применены для решения практически любой задачи оптимизации. Симплекс-метод был предложен американцем Г. Данцигом в 1951 г. Основная его идея состоит в продвижении по выпуклому многограннику ограничений от вершины к вершине, при котором на каждом шаге значение целевой функции улучшается до тех пор, пока не будет достигнут оптимум.