Эндокринная система
Эндокринная система человека — это совокупность специальных органов (желез) и тканей, расположенных в разных частях организма.
Железы вырабатывают биологически активные вещества — гормоны (от греческого hormáo — привожу в движение, побуждаю), которые выполняют роль химических агентов.
Гормоны выделяются в межклеточное пространство, где его подхватывает кровь и переносит в другие части организма. Гормоны влияют на деятельность органов, изменяя физиологические и биохимические реакции путём активации или торможения ферментативных процессов (процессов ускорения биохимических реакций и регулирования обмена веществ). То есть, гормоны оказывают на органы-мишени специфическое действие, которое, как правило, не способны воспроизвести другие вещества. Гормоны участвует во всех процессах роста, развития, размножения и обмена веществ. Химически гормоны представляют собой разнородную группу; многообразие представленных ими веществ включает стероиды, производные аминокислот, пептиды и белки. Железы, вырабатывающие гормоны, называют железами внутренней секреции, эндокринными железами. Они выделяют продукты своей жизнедеятельности — гормоны — непосредственно в кровь или лимфу (гипофиз, надпочечники и др.). Есть также железы другого вида — железы внешней секреции (экзокринные). Они не выделяют свои продукты в кровоток, а выделяют секреты на поверхность тела, слизистых оболочек или во внешнюю среду. Это потовые, слюнные, слезные, молочные железы и другие.
Деятельность желез регулируется нервной системой, а также гуморальными факторами (факторами из жидкой среды организма).
Биологическая роль эндокринной системы тесно связана с ролью нервной системы; эти две системы взаимно координируют функцию других (нередко разделённых значительным расстоянием органов и органных систем).
Основные железы внутренней секреции это — гипоталамус, гипофиз, щитовидная железа, околощитовидные железы, поджелудочная железа, надпочечники и половые железы.
Центральным звеном эндокринной системы является гипоталамус и гипофиз. Гипоталамус — это орган головного мозга, который, наподобие диспетчерской, даёт распоряжения по выработке и распределению гормонов в нужном количестве и в нужное время.
Гипофиз – железа, расположенная в основании черепа, выделяющая большое количество трофических гормонов — тех, которые стимулируют секрецию других эндокринных желез.
Гипофиз и гипоталамус надёжно защищены костным скелетом черепа и выполнены природой в уникальном для каждого организма, единственном экземпляре.
Периферическое звено эндокринной системы — щитовидная железа, поджелудочная железа, надпочечники, половые железы.
Щитовидная железа — секретирует три гормона; расположена под кожей в передней поверхности шеи, и ограждена от верхних дыхательных путей половинками щитовидного хряща. К ней примыкают четыре небольшие околощитовидные железы, участвующие в обмене кальция.
Поджелудочная железа — этот орган является одновременно экзокринным и эндокринным. Как эндокринный, он вырабатывает два гормона — инсулин и глюкагон, регулирующие обмен углеводов. Поджелудочная железа вырабатывает и снабжает пищеварительный тракт ферментами для расщепления пищевых белков, жиров и углеводов.
С почками граничат надпочечники, объединяющие деятельность двух типов желез. Надпочечники — представляют собой две небольшие железы, расположенные по одной над каждой почкой и состоящие из двух самостоятельных частей — коры и мозгового вещества.
Половые железы (яичники у женщин и яички у мужчин) — вырабатывают половые клетки и другие основные гормоны, участвующие в репродуктивной функции.
Все эндокринные железы и отдельные специализированные клетки синтезируют и секретируют в кровь гормоны.
Исключительна мощь регулирующего воздействия гормонов на все функции организма.
Их сигнальная молекула вызывает разнообразные изменения в обмене веществ: регулирует перераспределение энергетического материала и скорость его использования, управляет пополнением топливно-энергетических ресурсов или мобилизует их, усиливает выделение секретов — продуктов деятельности органов, других желез внутренней секреции и т.д.
Они определяют ритм процессов синтеза и распада, реализуют целую систему мер для поддержания водного и электролитного баланса — словом, создают индивидуальный оптимальный внутренний микроклимат, отличающийся стабильностью и постоянством, благодаря исключительной гибкости, способности к молниеносному реагированию и специфичности регуляторных механизмов и контролируемых ими систем.
Выпадение каждого из компонентов гормональной регуляции из общей системы нарушает единую цепь регуляции функций организма и приводит к развитию различных патологических состояний.
Спрос на гормоны определяется местными условиями, возникающими в тканях или органе, наиболее зависимом от определённого химического законодателя.
Если представить, что мы попали в режим повышенной эмоциональной нагрузки, то обменные процессы усиливаются.
Необходимо обеспечить организм дополнительными средствами для преодоления возникших проблем.
Глюкоза и жирные кислоты, легко распадаясь, могут обеспечить мозг, сердце и ткани других органов энергией.
Их не нужно срочно вводить с пищей, так как в печени и мышцах существуют запасы полимера глюкозы — гликогена, животного крахмала, а жировая ткань надёжно обеспечивает нас резервным жиром.
Этот метаболический запас обновляется, поддерживается в хорошем состоянии ферментами, использующими их в случае необходимости и своевременно пополняющимися при первой же возможности, при появлении малейших избытков.
Ферменты, способные расщеплять продукты наших запасов, расходуют их только по команде, приносимой к тканям гормонами.
В организме вырабатывается множество гормонов.
Они обладают разным строением, им свойствен различный механизм действия, они изменяют активность существующих ферментов и регулируют процесс их биосинтеза заново, обусловливая рост, развитие организма, оптимальный уровень обмена веществ.
В клетке сосредоточены разнообразные внутриклеточные службы — системы по переработке питательных веществ, преобразованию их в элементарно простые химические соединения, которые могут быть использованы по усмотрению на месте (например, для поддержания определённого температурного режима).
Наш организм живёт при оптимальном для него температурном режиме — 36-37°С.
В норме в тканях не возникает резких температурных перепадов.
Резкая смена температуры для организма, не подготовленного к этому — фактор опустошительного разрушения, способствующий грубому нарушению целостности клетки, её внутриклеточных образований.
В клетке имеются силовые станции, деятельность которых в основном специализирована на аккумуляции энергии.
Они представлены сложными мембранными образованиями – митохондриями.
Специфика деятельности митохондрий заключается в окислении, расщеплении органических соединений, питательных веществ, образовавшихся из белков, (углеводов и жиров пищи), но в результате предшествующих обменных превращений, потерявших уже признаки молекул биополимеров.
Распад в митохондриях сопряжён с важнейшим для жизнедеятельности процессом.
Происходит дальнейшее разукрупнение молекул и образование абсолютно идентичного продукта независимо от первичного источника.
Таково наше топливо, которое организм использует очень осмотрительно, поэтапно.
Это позволяет не только получать энергию в виде тепла, обеспечивающего комфортность нашего существования, но и главным образом накапливать её в виде универсальной энергетической валюты живых организмов — АТФ (аденозинтрифосфорной кислоты).
Высокая разрешающая способность электронно-микроскопических устройств позволила распознать структуру митохондрий.
Фундаментальные исследования советских и зарубежных учёных способствовали познанию механизма уникального процесса — аккумуляции энергии, служащего проявлением функции внутренней мембраны митохондрий.
В настоящее время сформировалась самостоятельная отрасль знаний об энергообеспечении живых существ — биоэнергетика, изучающая судьбу энергии в клетке, пути и механизмы её накопления и использования.
В митохондриях биохимические процессы превращения молекулярного материала имеют определённую топографию (расположение в организме). Ферментные системы окисления жирных кислот, аминокислот, а также комплекс биокатализаторов, образующих единый цикл по распаду карбоновых кислот в результате предшествующих реакций распада углеводов, жиров, белков, потерявших сходство с ними, обезличенных, унифицированных до десятка однотипных продуктов, которые сосредоточены в матриксе митохондрий — составляют так называемый цикл лимонной кислоты, или цикл Кребса.
Деятельность этих ферментов позволяет накапливать в матриксе могучую силу энергетических ресурсов.
Вследствие этого митохондрии образно называют электростанциями клетки.
Они могут использоваться для процессов восстановительного синтеза, а также образуют горючий материал, из которого набор ферментов, вмонтированных асимметрично поперёк внутренней мембраны митохондрий, извлекает энергию для жизнедеятельности клетки.
Окислителем в обменных реакциях служит кислород.
В природе взаимодействие водорода и кислорода сопровождается лавинообразным выделением энергии в виде тепла.
При рассмотрении функций любых клеточных органелл ("органов" простейших) становится очевидным, как их деятельность и режим работы клетки зависят от состояния мембран, их проницаемости, специфики набора ферментов, образующих их и служащих строительным материалом этих образований.
Правомочна аналогия между текстами — набором букв, образующих слова, складывающиеся во фразы, и способом шифрования информации в нашем организме.
Имеется в виду последовательность чередования нуклеотидов (составной части нуклеиновых кислот и других биологически активных соединений) в молекуле ДНК — генетическом коде, в котором, как в древнем манускрипте, сосредоточены необходимые сведения о воспроизведении белков, присущих данному организму.
Примером кодирования информации языка органических молекул может служить наличие рецептора, узнаваемого гормоном, распознающего его среди массы различных соединений, сталкивающихся с клеткой.
Когда какое-то соединение устремляется в клетку, то самопроизвольно проникнуть в неё оно не может.
Барьером служит биологическая мембрана.
Однако в неё предусмотрительно вмонтирован специфический переносчик, который доставляет претендента на внутриклеточную локализацию по назначению.
Возможно ли в организме различное "толкование" его молекулярных обозначений — "текстов"? Совершенно очевидно, что это — реальный путь к дезорганизации всех процессов в клетках, тканях, органах.
"Внешнедипломатическая служба" позволяет клетке ориентироваться в событиях внеклеточной жизни на уровне органа, постоянно находиться в курсе текущих событий во всём организме, выполняя распоряжения нервной системы с помощью гормонального контроля, получая топливно-энергетический и строительный материал.
Помимо этого, внутри клетки постоянно и гармонично идёт своя молекулярная жизнь.
В клеточном ядре хранится клеточная память — нуклеиновые кислоты, в структуре которых закодирована программа образования (биосинтеза) разнообразнейшего набора белков.
Они осуществляют строительно-структурную функцию, являются биокатализаторами-ферментами, могут осуществлять транспорт некоторых соединений, исполнять роль защитников от чужеродных агентов (микробов и вирусов).
Программа содержится в ядерном материале, а работу по построению этих крупных биополимеров осуществляет целая конвейерная система.
В генетически строго определённой последовательности подбираются и скрепляются в единую цепь аминокислоты, кирпичики белковой молекулы.
Эта цепь может насчитывать тысячи аминокислотных остатков.
Но в микромире клетки невозможно было бы разместить весь необходимый материал, если бы не исключительно компактная упаковка его в пространстве.