Задача, решаемая по формуле полной вероятности
Пример: В ящике содержатся детали, изготовленные на девяти заводах в количестве
, среди которых имеются дефектные детали в количестве
. Детали первых семи заводов окрашены соответственно в семь цветов, а восьмой и девятый − в белый и черный. Наудачу из ящика извлекается деталь. Найти вероятность того, что деталь окажется дефектной (событие А).
Решение: Общее число возможных элементарных исходов: . Число благоприятствующих исходов (количество дефектных деталей):
. Тогда
или
.
Проведем тождественное преобразование
.
Отметим, что ,
− вероятность появления дефектной детали среди деталей
-го цвета (при условии, что детали изготовлялись на конкретном
-м заводе), т.е. для такой условной вероятности вводятся обозначения
− вероятность события А, вычисленная в предположении, что событие
наступило. Таким образом, искомая формула принимает вид:
или
,
что составляет содержание «формулы полной вероятности»: вероятность события А, которое может наступить лишь при появлении одного из несовместных событий (гипотез)
, образующих полную группу событий, равна сумме произведений вероятностей каждой из гипотез на соответствующую условную вероятность события А. Очевидно, что
.