Порядок расчета. Результат измерения при однократном измерении определяется по алгоритму, представленному на рисунке 34 в источнике [1]

Результат измерения при однократном измерении определяется по алгоритму, представленному на рисунке 34 в источнике [1].

Обработка экспериментальных данных зависит от вида используе­мой априорной информации. Если это информация о классе точности, то пределы, в которых находится значение измеряемой ве­личины без учета поправки, определяются следующим образом:

 

Q1 = X; Q2 = X + ,

 

где - предел допускаемой абсолю­тной погрешности средства измерения при его показании X. Значе­ние определяется в зависимости от класса точности и способа его задания по ГОСТ 8.401-80.

Если в качестве априорной используется информация о законе распределения вероятности, то пределы определяются через дове­рительный интервал:

 

Q1 = XE; Q2 = X + Е.

 

Значение Е определяется в зависимости от вида закона распределе­ния вероятности результата измерения. Для нормального закона

 

Е = tSx,

 

где t для заданной доверительной вероятности Р выбира­ется из таблиц интегральной функции нормированного нормального распределения Ф(t) (например, табл. 1.1.2.6.2 [2], при этом следует учитывать, что Р = 2Ф(t)). Таблица распределения также приведена в приложении Б.

Для равномерного закона распреде­ления вероятности результата измерения значение Е (аналог довери­тельного интервала) можно определить из выражения

 

Е = aSx,

 

где .

При представлении результата измерения необходимо внести поправки и уточнить пределы, в которых находится значение измеряемой величины.

При вычислении следует руководствоваться прави­лами округления, согласно которым значения среднеквадратических отклонений указываются в окончательном ответе двумя значащими цифрами, если первая из них равна 1 или 2, и одной, если первая равна 3 или более. Все предварительные расчеты выполняются не ме­нее чем с одним или двумя лишними знаками.

В качестве справочных данных могут исполь­зоваться аналогичные таблицы из других литературных источников.