Логистическая модель изменения погрешности
Некоторые из недостатков экспоненциальной модели старения удается устранить при использовании так называемой [5] логистической модели. Кривые, описывающие процесс изменения погрешности СИ и частоты отказов, приведены на рис. 13.3. В области малых значений погрешности (0,2-1%) зависимость D0,95(t) экспоненциально ускоряется, а в области больших значений — экспоненциально замедляется и при очень больших значениях времени выходит на некоторый предельный уровень, выше которого погрешность не возрастает. Кривая частоты метрологических отказов (см. рис. 13.3) при малых значениях времени возрастает, достигая своего максимума при некотором значении Тс, после которого начинается спад до нуля. Участки кривой D0,95(t), соответствующие диапазонам 1 и 2 изменения времени, не обязательно должны быть симметричны относительно точки (Dс, Тс). Ускорения процесса старения at и а2, как правило, имеют разные значения. Частота метрологи ческих отказов на участках 1 и 2 соответственно равна
(13.9)
где w01, w02 — начальные частоты метрологических отказов на участках 1 и 2. Абсцисса точки, разделяющей два участка,
(13.10)
-
Рис. 13.3, Логистическая модель временного
изменения погрешности
Используя параметры логистической модели процесса старения, можно обоснованно прогнозировать моменты наступления метрологических отказов tn и изменение с возрастом наработки на отказ Тп. Момент наступления n-го метрологического отказа при t < Тс и t > Тс определяется соответственно по формулам:
Длительность межремонтных интервалов при
где n — порядковый номер ремонта.
Проведенные экспериментальные исследования [5] показали, что длительность межремонтных интервалов, начиная со второго, монотонно и ускоренно возрастает. Отличие первого интервала от последующих состоит в том, что на нем СИ работает с запасом нормируемого значения погрешности, обеспеченным изготовителем. На остальных межремонтных интервалах этот запас обеспечивается ремонтными службами предприятия. Многократное превышение первого интервала по сравнению с остальными указывает на то, что ремонтные запасы погрешности Dр предусматриваются во много раз меньшими, чем заводские запасы D3.
Кривая изменения погрешности D0,95(t) в случае использования логистической модели при t < Тс и t > Тс имеет соответственно вид
где
При практическом использовании приведенных в этом разделе формул необходимо помнить, что входящие в них параметры являются оценками, которые должны быть получены на основе обработки экспериментальных данных для достаточно представительных выборок однотипных СИ. Поэтому сами оценки параметров имеют определенный разброс, поскольку представляют собой некоторые средние оценки обследованной группы приборов, у отдельных экземпляров которых могут быть весьма существенные индивидуальные отклонения постоянных D0,95, D3, w01 и аi. В связи с этим все рассчитанные по приведенным формулам показатели должны рассматриваться лишь как средние прогнозируемые величины.
К недостаткам логистической модели следует отнести то, что она не позволяет описывать изменение погрешности СИ от момента изготовления прибора до нескольких месяцев его эксплуатации. Это связано с тем, что как в линейной, так и в экспоненциальной модели значение начальной погрешности \ считалось постоянной величиной, неизменной с момента изготовления СИ. В действительности указанная погрешность образуется из различных составляющих, возникающих на начальных стадиях эксплуатации СИ.
Одним из вариантов описания изменения погрешности СИ, начиная с первых секунд его эксплуатации, является спектральное описание погрешности [5]. Оно позволяет подробно описать многие особенности изменения погрешности прибора. Главный недостаток спектрального описания состоит в очень большом объеме экспериментальных данных, необходимых для построения спектральных кривых.
Рассмотренные выше модели являются разновидностями модели нестационарного монотонного процесса изменения погрешности во времени. Их общий недостаток — идеализация случайных процессов изменения MX средства измерений, которые представляются монотонными. При этом не учитываются флуктуационные, обратимые процессы изменения параметров и характеристик приборов. Данный недостаток в той или иной степени устранен в полиномиальной и диффузионной марковской моделях, а также в модели на основе процессов авторегрессии проинтегрированного скользящего среднего [96-99].