Метод наименьших квадратов
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами
, где
– общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности.

Рис. 12
При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы «сгладить» экспериментальные погрешности, вычислить значения функции в точках, не содержащихся в исходной таблице.
Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерийнаименьших квадратов, т.е. определяют такую функциональную зависимость
, при которой
обращается в минимум. Погрешность приближения оценивается величиной
. В качестве функциональной зависимости рассмотрим многочлен
. Формула минимизируемой функции примет вид
. Условия минимума
можно записать, приравнивая нулю частные производные
по всем переменным,
.
Получим систему уравнений
или
,
.
Эту систему уравнений перепишем в следующем виде:
,
.
Введем обозначения:
. Последняя система может быть записана так:
,
.
Её можно переписать в развернутом виде:
.
Матричная запись системы имеет следующий вид:
. Для определения коэффициентов
, и, следовательно, искомого многочлена, необходимо вычислить суммы
и решить последнюю систему уравнений. Матрица
этой системы является симметричной и положительно определенной.
Погрешность приближения в соответствии с исходной формулой составит
. Рассмотрим частные случаи
и
.
Линейная аппроксимация
.
.
; 
,
.
Отсюда система для нахождения коэффициентов
имеет вид:
.
Её можно решить методом Крамера.
Квадратичная аппроксимация
.
.
.
.
,
.
Или в развёрнутом виде

Решение системы уравнений
находится по правилу Крамера.