ДЕТАЛЬНЫЙ РАСЧЕТ ПРОТОЧНОЙ ЧАСТИ
В курсовом проекте выполняется детальный расчет пяти ступеней турбины: первых двух (включая регулирующую) и последних трех. Мето-дики детального расчета одновенечной и двухвенечной ступеней по среднему диаметру приведены в Приложениях I, II. Здесь следует обратить внимание на следующие детали.
Расчет производится от параметров торможения, т. е. с учетом кине-тической энергии потока на выходе из предыдущей ступени. При этом располагаемый теплоперепад ступени от параметров торможения (т. е. с учетом энергии выходной скорости из предыдущей ступени), кДж/кг:
,
где h0 – располагаемый теплоперепад ступени от статических параметров, найденный в предварительном расчете (см. раздел 2), кДж/кг; С0 – абсо-лютная скорость на входе в ступень (это скорость С2 на выходе из преды-дущей ступени), м/с; – коэффициент использования этой скорости, ≈ sin2α2 ≈ 0,8–1,0. Для регулирующей и первой нерегулируемой ступени = 0. По мере расчета строится реальный процесс расширения в H–S диаграмме, рис. I.2, II.2.
Проходная площадь сопловых решеток определяется по-разному в зависимости от числа Маха:
при M1t > 1
,
при M1t < 1
.
При сверхзвуковом истечении необходимо учитывать отклонение потока в косом срезе по формуле Бэра. Параметры следует определять очень точно, лучше по электронным таблицам, иначе можно получить абсурдные результаты. При числах Маха М ≤ 1,1 отклонением можно пренебречь и принимать угол выхода потока из сопловой решетки .
В современных турбинах применяются цилиндрические бандажи, поэтому высоты рабочих, а в двухвенечных ступенях и поворотных лопаток определяются с учетом перекрыш, рис. I.1:
,
,
,
где – суммарная перекрыша, табл. I.1.
По найденным высотам вычисляются эффективные углы, град:
Профили лопаток выбираются по углам входа–выхода потока и чис-лам Маха (Приложение XI). Для сопловых лопаток это α0,α1эф и М1t, для рабочих – β1,β2эф и М2t. Необходимо обратить внимание на правильный выбор хорд b1 и b2 для профилей сопловых и рабочих лопаток ступени. Размер хорды определяет напряжение изгиба в лопатке. Чем больше хорда, тем меньше изгибающие напряжения, тем прочнее лопатка. С другой стороны, с увеличением хорды возрастают профильные потери, снижается КПД ступени. Поэтому значение хорды по большому счету должно определяться из прочностного расчета лопатки. Поскольку в рамках курсо-вого проекта расчет на прочность всех лопаток не производится, значения хорд b1 и b2 целесообразно принимать по чертежу заданного прототипа. На чертеже прототипа выбирается ступень с близкими высотами лопаток и для нее определяются соотношения хорды и высоты b1/l1 и b2/l2. Прини-мая эти же соотношения, по известным высотам l1 и l2рассчитываемой ступени определяют их хорды b1 и b2. Нередко принимают одинаковые хорды сопловых, а также рабочих лопаток на протяжении какого-то отсека (ЧВД, например). Хорды сопловых лопаток могут составлять b1= 50–100 мм, рабочих лопаток b2= 30–80 мм. Число лопаток должно быть целым.
Поэтому принятые значения хорды и шага в дальнейшем коррек-тируются. Распространенной ошибкой здесь является выбор хорды напрямую из характеристик профилей (Приложение XI).
Особенностью расчета промежуточных ступеней является то, что в предварительных расчетах уже определены средние и корневые диаметры на всем протяжении проточной части (раздел 2). Поэтому высота рабочих лопаток не вычисляется по уравнению неразрывности, а определяется как разность найденных диаметров:
,
где dсри dk – средний и корневой диаметры ступеней; – сум-марная перекрыша, табл. I.1.
Эффективный угол выхода из сопловой решетки определяется из уравнения неразрывности по найденной высоте:
Здесь степень парциальности е подбирается такой, чтобы обеспе-чить значение угла ≥ 8о.
Относительный лопаточный КПД ηол определяется по располагаемой энергии Е0 = χ0 С02/2000 + h0 –χ2∙∆hвс = –χ2∙∆hвс. Здесь χ0 = 0,8–1,0 – коэффициент использования выходной скорости предыдущей ступени в данной ступени, χ2 =0,8–1,0– коэффициент использования выходной ско-рости данной ступени в последующей. Для последней ступени турбины или цилиндра, а также для регулирующей ступени χ2 = 0. Для регули-рующей ступени и первой нерегулируемой χ0 = 0. КПД ηол определяется двумя способами: через потери энергии и по треугольникам скоростей. Значения ηол, вычисленные двумя способами, не должны отличаться более, чем на 1,5 %.
После определения дополнительных потерь на трение диска, от парциальности, утечек и влажности вычисляется относительный внутренний КПД ступени:
ηоi = ηол – ξтр – ξпарц – ξут – ξвл.
В ступенях с полным подводом пара (e = 1) отсутствует потеря от парциальности ξпарц, а в ступенях, работающих в области перегретого пара, отсутствует потеря от влажности ξвл.
В конечном итоге определяется полезно использованный тепло-перепад и внутренняя мощность ступени:
По мере расчета строится реальный процесс расширения ступени с учетом всех потерь, рис. I.2, II.2. К расчету каждой ступени прилагается эскиз теплового процесса со значениями основных параметров пара и тре-угольники скоростей, построенные в масштабе, рис. I.3, II.3.