Вторая группа аксиом – аксиомы размерности трехмерного векторного пространства V3

Аксиомы Вейля трехмерного евклидова пространства.

Первая группа аксиом – аксиомы линейного векторного пространства.

BI1. Для любых векторов Î V3 справедливо равенство .

BI2. Для любых трех векторов выполнено: .

BI3. Существует вектор Î V3 такой, что для любого имеет место:

BI4. Для любого вектора Î V3 найдется вектор Î V3 такой, что .

BI5. Для любых чисел l, mÎR и любого вектора Î V3 справедливо равенство (l+m) =l +m .

BI6. Для любого числа lÎR и любых векторов и из V3 справедливо равенство l = .

BI7. Для любых чисел l, mÎRи любого вектора Î V3 справедливо равенство (lm) =l(m ).

BI8. Для любого вектора ÎV3 справедливо равенство 1×=.

Вторая группа аксиом – аксиомы размерности трехмерного векторного пространства V3.

BII1. Существует линейно независимая тройка векторов , т.е. такая тройка векторов, для которой из соотношения следует l=m=h=0.

BII2. Любые четыре вектора линейно зависимы, т.е. для любых векторов существуют числа l, m, h, nÎR, не все равные нулю, для которых .