Предпочтение уверенности сомнению


По результатам телефонного опроса 300 пенсионеров, 60 % поддерживают президента.

Если бы вас попросили изложить смысл этого предложения в трех словах, как бы вы это сделали? Почти наверняка вы бы сказали: «Пенсионеры поддерживают президента». Эти слова передают суть истории. Опущенные детали опроса (то, что его проводили по телефону, и количество респондентов) сами по себе неинтересны, они просто описывают исходные условия. При другом размере выборки вы все равно сказали бы то же самое. Конечно, абсурдное количество – 6 или 60 миллионов – привлекло бы внимание. Но если вы профессионально этим не занимаетесь, вы, возможно, почти одинаково отреагируете на выборку из 1 50 и 3000 человек. Фраза «Люди не уделяют должного внимания размеру выборки» именно это и означает.
Сообщение об опросе содержит информацию двух типов: историю и ее источник. Естественно, вы больше обращаете внимание на саму историю, чем на достоверность результатов. Однако, если достоверность невысока, сообщение не усвоят. Услышав, что «Группа сторонников провела некорректный и тенденциозный опрос, чтобы показать, что пенсионеры поддерживают президента», вы, конечно же, отвергнете эту информацию, результаты опроса не станут частью того, во что вы верите. Вместо этого некорректный опрос и его фальшивые результаты превратятся в очередную историю о вранье политиков. В таких явных случаях вы можете принять решение не верить. Но достаточно ли хорошо вы ощущаете разницу между «Я прочел в The New York Times…» и «Я слышал возле кулера…»? Умеет ли ваша Система 1 различать степени веры? Принцип WYSIATI предполагает, что нет.
Как уже упоминалось, Систе ма 1 не склонна к сомнениям. Она подавляет неоднозначность и самопроизвольно составляет когерентные истории. Если сообщение не отвергается немедленно, то связанные с ним ассоциации будут распространяться так, как если бы оно было верным. Система 2 способна сомневаться, поскольку может одновременно рассматривать несовместимые варианты. Однако поддерживать сомнения труднее, чем уверяться в чем-либо. Закон малых чисел – проявление общей склонности к уверенности вместо сомнений, которая под разными видами еще не раз появится в следующих частях.
Сильная предрасположенность верить, что маленькие выборки точно представляют все население, означает и нечто большее: мы склонны преувеличивать последовательность и когерентность увиденного. Излишняя вера исследователей в результаты нескольких наблюдений сродни эффекту ореола, часто возникающему у нас чувству, что мы знаем и понимаем человека, о котором нам, по сути, известно мало. Система 1 предвосхищает факты, составляя по об рывочным сведениям полную картину. Механизм для поспешных выводов ведет себя так, будто верит в закон малых чисел. В целом он создает чересчур осмысленную картину реальности.