ОПЕРАЦИИ С ВИДАМИ ПРОСТОГО КАТЕГОРИЧЕСКОГО СИЛЛОГИЗМА
К операциям с данной формой мысли следует отнести то, что частично уже было затронуто, а именно - сведение модусов II-IV фигур к модусам первой фигуры, поскольку она занимает особое привилегированное положение в сравнении с остальными. Ее место определяет и старшинство модусов первой фигуры, подчиняющее их положение по отношению к другим модусам. Как же совершается сведение модусов в каждом отдельном случае?
Конкретный прием сведения модусов закодирован в их названии. Если в названии модусов II-IV фигур встречается согласная "m", то эти модусы сводимы путем простой перестановки посылок местами. Это достаточно очевидно для четвертой фигуры, но менее - для третьей и второй. В них перестановка посылок сопровождается еще и другими действиями, о которых напоминают другие согласные в названии модусов. Наличие в названии модусов согласной "p" говорит о том, что суждение перед этой согласной необходимо обратить, а при наличии в названии модусов согласной "s" - что суждения перед данной согласной обращаются прямо, без ограничения. Так как обращение без ограничения возможно либо с общеотрицательным суждением, в котором и субъект и предикат всегда распределены, либо с частноутвердительным суждением, в котором и субъект и предикат не распределены, то можно быть уверенным, что перед согласной "s" всегда будет или общеотрицательное (Е), или частноутвердительное (I) суждение.
Суммируем сказанное: модусы II-IV фигур, названия которых начинаются соответствующими согласными, сводимы к модусам первой фигуры с такими же заглавными буквами, кроме двух - модуса Baroco и Bocardo, о чем свидетельствует согласная "с" в их названии; наличие в названии модусов согласной "m" говорит о необходимости при сведении поменять посылки местами; наличие согласной "р" - что суждения перед нею обращаются; а наличие согласной "s" - что они обращаются без ограничения. Остальные согласные - для благозвучия.
Возьмем, например, модус четвертой фигуры Bramantip, название которого говорит, что он сводим к модусу Barbara. Раз в названии модуса встречаются две согласные, имеющие определенное процессуальное значение, - m и р, то выполняя последовательно соответствующие действия, именно - вначале меняем посылки местами, а потом обращаем выводное суждение, - в итоге и получаем модус Barbara первой фигуры:
Все мои друзья - студенты (А) P --- M Это IV фигура.
Все студенты - учащиеся (А) M --- S
Некоторые учащиеся - мои друзья (I) S --- P
Меняем посылки местами и одновременно обращаем вывод:
Все студенты - учащиеся (А)
Все мои друзья - студенты (А)
Все мои друзья - учащиеся (А)
В итоге получаем модус Barbara первой фигуры. Понятно, что по четвертой фигуре вывод не мог быть общим суждением, так как субъект вывода является предикатом утвердительной меньшей посылки, а предикат утвердительных посылок, как правило, нераспределен; зато по первой фигуре вывод, естественно, общий, поскольку субъект вывода является субъектом общеутвердительной меньшей посылки.
Модусы Сеsаrе, Саmеstres, Саmеnеs сводимы к модусу первой фигуры Сеlаrеnt. Например:
Все коровы не есть птицы (Е) P --- M
Все воробьи - птицы (А)S --- M
Все воробьи не есть коровы (Е) S --- P
Это модус Cesare второй фигуры. Согласная s в его названии показывает, что сведение к модусу Celarent первой фигуры возможно всего лишь одним действием - прямым обращением большей общеотрицательной посылки, т.е. суждения перед согласной s:
Все птицы не есть коровы (Е) М --- Р
Все воробьи - птицы (А)S --- M
Все воробьи не есть коровы (Е) S --- P
Возьмем другой модус:
Все тигры - позвоночные (A) P --- M
Все насекомые не есть позвоночные (E) S --- M
Все насекомые не есть тигры (E) S --- P
Это модус Camestres II фигуры, в названии которого присутствуют две значащие для нашей операции согласные - m и s, при этом s в названии модуса встречается дважды. Данный модус простым обращением большей посылки (так как она общеутвердительное суждение и обращается только в частноутвердительное суждение, не могущее быть большей посылкой первой фигуры) превратить в модус I фигуры невозможно. Поэтому, вначале обратим общеотрицательную меньшую посылку (она обращается прямо), потом поменяем, согласно m, посылки местами и, наконец, обратим тоже прямо общеотрицательный вывод. В итоге получаем модус Celarent первой фигуры:
Все позвоночные не есть насекомые (E) M --- P
Все тигры - позвоночные (A)S --- M
Все тигры не есть насекомые (E) S --- P
Модус Camenes четвертой фигуры сводим к модусу Celarent простой перестановкой посылок местами и прямым обращением общеотрицательного вывода. Например, исходный модус IV фигуры:
Все птицы имеют клюв (А) P --- M
Все имеющие клюв не являются насекомыми (Е)M --- S
Все насекомые не являются птицами (Е) S --- P
Выполняем зашифрованные в названии модуса действия:
Все имеющие клюв не являются насекомыми (Е) М --- Р
Все птицы имеют клюв (А)S --- М
Все птицы не являются насекомыми (Е) S --- Р
Модусы Dаrарti, Disamis, Datisi, Dimaris сводимы к модусу Dаrii. Например, модус Darapti третьей фигуры:
Все киты - млекопитающиеся (A) M --- P
Все киты живут в воде (А) M --- S
Некоторые живущие в воде - млекопитающиеся (I) S --- P
Этот модус сводим всего лишь обращением меньшей посылки, являющейся общеутвердительным суждением, обращаемым с ограничением в частноутвердительное. В итоге получаем модус Darii первой фигуры:
Все киты - млекопитающиеся (A) M --- P
Некоторые, живущие в воде, - киты (I) S --- M
Некоторые, живущие в воде, - млекопитающиеся (I) S --- P
Модусы Festino, Felapton, Ferison, Fesapo, Fresison сводимы к модусу Ferio. Например, Felapton третьей фигуры:
Ни один тигр не есть травоядное (Е) М --- Р
Все тигры - хищники (А)М --- S
Некоторые хищники не есть травоядные (О) S --- P
Данный модус сводится обращением меньшей посылки, а так как она общеутвердительное суждение, то обращается в частноутвердительное, и в итоге получается модус Ferio первой фигуры:
Ни один тигр не есть травоядное (E) M --- P
Некоторые хищники - тигры (I) S --- M
Некоторые хищники не есть травоядные (О) S --- P