Гра­фи­ки

Функ­ции

 

А) y = 2x + 4 Б) y = 2x 4 В) y= 2x + 4

 

 

Гра­фи­ки

 

 

За­да­ние 13 № 169915. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если угол равен 45°, то вер­ти­каль­ный с ним угол равен 45°.

2) Любые две пря­мые имеют ровно одну общую точку.

3) Через любые три точки про­хо­дит ровно одна пря­мая.

4) Если рас­сто­я­ние от точки до пря­мой мень­ше 1, то и длина любой на­клон­ной, про­ве­ден­ной из дан­ной точки к пря­мой, мень­ше 1.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их через точку с за­пя­той в по­ряд­ке воз­рас­та­ния.

 

За­да­ние 13 № 169916. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой со­от­вет­ствен­ные углы равны 65°, то эти две пря­мые па­рал­лель­ны.

2) Любые две пря­мые имеют не менее одной общей точки.

3) Через любую точку про­хо­дит более одной пря­мой.

4) Любые три пря­мые имеют не менее одной общей точки.

За­да­ние 13 № 169917. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой внут­рен­ние на­крест ле­жа­щие углы со­став­ля­ют в сумме 90°, то эти две пря­мые па­рал­лель­ны.

2) Если угол равен 60°, то смеж­ный с ним равен 120°.

3) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой внут­рен­ние од­но­сто­рон­ние углы равны 70° и 110°, то эти две пря­мые па­рал­лель­ны.

4) Через любые три точки про­хо­дит не более одной пря­мой.

 

 

За­да­ние 13 № 311763. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Через любую точку про­хо­дит не менее одной пря­мой.

2) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой со­от­вет­ствен­ные углы равны 65°, то эти две пря­мые па­рал­лель­ны.

3) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой внут­рен­ние на­крест ле­жа­щие углы со­став­ля­ют в сумме 90°, то эти две пря­мые па­рал­лель­ны.

За­да­ние 13 № 311851. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой со­от­вет­ствен­ные углы равны 37°, то эти две пря­мые па­рал­лель­ны.

2) Через любые три точки про­хо­дит не более одной пря­мой.

3) Сумма вер­ти­каль­ных углов равна 180°.

За­да­ние 13 № 316233. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Смеж­ные углы равны.

2) Любые две пря­мые имеют ровно одну общую точку.

3) Если угол равен 108°, то вер­ти­каль­ный с ним равен 108°.

За­да­ние 13 № 316286. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Если угол равен 47°, то смеж­ный с ним равен 153°.

2) Если две пря­мые пер­пен­ди­ку­ляр­ны тре­тьей пря­мой, то эти две пря­мые па­рал­лель­ны.

3) Через любую точку про­хо­дит ровно одна пря­мая.

 

За­да­ние 13 № 316323. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Любые три пря­мые имеют не более одной общей точки.

2) Если угол равен 120°, то смеж­ный с ним равен 120°.

3) Если рас­сто­я­ние от точки до пря­мой боль­ше 3, то и длина любой на­клон­ной, про­ведённой из дан­ной точки к пря­мой, боль­ше 3.

 


В тре­уголь­ни­ке ABC про­ве­де­на бис­сек­три­са AL, угол ALC равен 112°, угол ABC равен 106°. Най­ди­те угол ACB. Ответ дайте в гра­ду­сах.

 

За­да­ние 9 № 311320. В рав­но­сто­рон­нем тре­уголь­ни­ке ABC бис­сек­три­сы CN и AM пе­ре­се­ка­ют­ся в точке P. Най­ди­те .

За­да­ние 9 № 311343. В рав­но­сто­рон­нем тре­уголь­ни­ке ABC ме­ди­а­ны BK и AM пе­ре­се­ка­ют­ся в точке O. Най­ди­те .

За­да­ние 9 № 311680.

В рав­но­бед­рен­ном тре­уголь­ни­ке ABC с ос­но­ва­ни­ем AC внеш­ний угол при вер­ши­не Cравен 123°. Най­ди­те ве­ли­чи­ну угла ABC. Ответ дайте в гра­ду­сах.

 

За­да­ние 9 № 339364. В тре­уголь­ни­ке ABC AC = BC. Внеш­ний угол при вер­ши­не B равен 146°. Най­ди­те угол C. Ответ дайте в гра­ду­сах.

За­да­ние 9 № 311355. Бис­сек­три­сы углов N и M тре­уголь­ни­ка MNP пе­ре­се­ка­ют­ся в точке A. Най­ди­те , если , а

За­да­ние 9 № 311412. Углы, от­ме­чен­ные на ри­сун­ке одной дугой, равны. Най­ди­те угол . Ответ дайте в гра­ду­сах.