Примерный перечень экзаменационных вопросов
- Методы координат на плоскости.
- Основные задачи, решаемые методом координат.
- Уравнение прямой с угловым коэффициентом.
- Общее уравнение прямой.
- Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.
- Уравнение прямой, проходящей через две данные точки.
- Уравнение прямой в отрезках.
- Угол между двумя прямыми.
- Взаимное расположение двух прямых на плоскости.
- Расстояние от точки до прямой.
- Уравнение окружности.
- Каноническое уравнение эллипса.
- Каноническое уравнение гиперболы.
- Директрисы эллипса и гиперболы.
- Каноническое уравнение параболы.
- Матрица. Виды матриц.
- Операции над матрицами.
- Определители квадратных матриц.
- Миноры, алгебраические дополнения, теорема Лапласа.
- Обратная матрица. Алгоритм вычисления обратной матрицы.
- Ранг матрицы.
- Решение системы линейных уравнений (СЛАУ) по формулам Крамера.
- Решение СЛАУ методом обратной матрицы.
- Решение СЛАУ методом Гаусса.
- Теорема Кронекера – Капелли.
- Дать основные понятия вектора.
- Линейные операции над векторами.
- Понятие линейной зависимости векторов.
- Линейная зависимость векторов на плоскости.
- Линейная зависимость векторов в пространстве.
- Базис на плоскости и в пространстве.
- Скалярное произведение векторов и его основные свойства.
- Направляющие косинусы вектора.
- Векторное произведение векторов и его основные свойства.
- Смешанное произведение векторов и его основные свойства.
- Плоскость. Уравнение плоскости, проходящей через данную точку перпендикулярно к данному вектору.
- Неполное уравнение плоскости.
- Уравнение плоскости в отрезках.
- Расстояние от точки до плоскости.
- Угол между плоскостями.
- Условия параллельности и перпендикулярности плоскостей.
- Общее уравнение прямой в пространстве.
- Каноническое уравнение прямой в пространстве.
- Параметрические уравнения прямой.
- Уравнение прямой в пространстве, проходящее через две различные данные точки.
- Угол между прямыми в пространстве.
- Условия параллельности и перпендикулярности прямой и плоскости.
- Уравнение плоскости, проходящей через данную точку и параллельной данной плоскости.
- Уравнение плоскости, проходящей через две данные точки перпендикулярной к данной плоскости.
- Уравнение плоскости, проходящей через три данные точки не лежащие на одной прямой.
Задание 1. Найти указанные пределы ( не используя правило Лопиталя).
а).
; б).
;
в).
; г).
;д).
.
Решение.
а).
.Непосредственная подстановкапредельного значения аргумента х=3приводит к неопределенности вида
. Чтобы раскрыть эту неопределенность разложим числитель и знаменатель на множители по формуле аx2 + bx + c = а(x – x1)(x – x2) , где х1 и х2 – корни квадратного трехчлена, и сократим члены дроби на общий множитель (х – 3). Так как аргумент х только стремится к своему предельному значению 3 , но не совпадает с ним, то множитель (х – 3) отличен от нуля при х
3. Будем иметь:
.
б).
.При х
имеем неопределенность вида
.Разделим числитель и знаменатель дроби на х2 (х2
0 при х
). Получим:
=
=
(по свойствам пределов).
в).
[¥ - ¥]=

г).
. Непосредственная подстановка х=0дает неопределенность вида
.Умножимчислитель и знаменатель дроби на выражение
. Имеем:
=
=
.
д).
. При х
основание
стремится к I, показатель степени 7х+3 стремится к ¥.
Следовательно имеем неопределенность вида [
].Используем второй замечательный предел
. Представим основание в виде суммы I и некоторой бесконечной малой величины
. Тогда
= =

=
.
f(x) =
, x = 0.
Задание 2.
Функция y=f(x) задана различными аналитическими выражениями для различных областей изменения независимой переменной. Найти точки разрыва функции, если они существуют. Построить график функции:

Решение.
Функции у = х2 + 1, у = 2, у = 3х непрерывны на всей числовой прямой, поэтому данная функция может иметь разрывы только в точках, где меняется ее аналитическое выражение, т.е. в точках х1 = 1 и х2 = 2.
Исследуем функцию на непрерывность в этих точках, для чего найдем соответствующие односторонние пределы и значения функции.
В точке х1 = 1 имеем:
,
,
а значение
не определено. Отсюда следует, что х1 = 1 – точка устранимого разрыва. Для точки х2 = 2 получим:
,
, 
Таким образом, в этой точке
,
т.е. функция имеет разрыв 1-го рода.

Таблица производных простейших элементарных функций
Значения производных от основных элементарных функций c независимым аргументом хи со сложным аргументом u .
1. (xn) ′ = n xn – 1 (un) ′x = n un – 1 u′x
2. (
)′ =
(
)′x = 
3.
=
x = 
4. (ex) ′ = ex (eu) ′x = eu u′x
5. (ax) ′ = ax lna (au) ′x = au ln a u′x
6. (ln x) ′ =
(ln u) ′x = 
7. (loga x) ′ =
(loga u)x = 
8. (sin x) ′ = cos x (sin x) ′x = cos u u′x
9. (cos x) ′ = - sin x (cos x) ′x = - sin u u′x
10. (tg x) ′ =
(tg u) ′ x = 
11. (ctg x)` =
(ctg u) ′x = 
12. (arcsin x) ′ =
(arcsin u)`x = 
13. (arcсos x) ′ =
(arccos u) ′x = 
14. (arctg x) ′ =
(arctg u) ′x = 
15. (arcctg x) ′ =
(arcctg u) ′x = 
Задание 3.Найти производные функций:
а)
; б)у=
; в)
;
г) y = xx; д)еу + е-х + ху =0.
Решение.
а)Используя правило дифференцирования дроби, получим:
. Вычислим далее производные каждого из выражений
и
:
=6х + 1;
=
. Будем иметь:
.
б)Воспользуемся вначале правилом дифференцирования сложной степенной функции:
. Найдем далее производную разности
. Производная выражения
есть производная сложной показательной функции. Она равна:
.
Производная выражения
есть производная сложной логарифмической функции. Она равна:
.Окончательно будем иметь:
.
.
в) Предварительно преобразуем функцию, используя свойство логарифмов:
. Применяя правила дифференцирования разности функций и сложной логарифмической функции, получим:
.
г) Предварительно прологарифмируем по основанию е обе части равенства ln y = x ln x . Теперь дифференцируем обе части, считая ln y сложной функцией от переменной х: (ln y) ′ =
= ln x +
. Окончательно имеем:
y′ = y [ ln x + 1 ] = = xx [ ln x + 1 ] .
д)При дифференцировании неявно заданной функции учитываем, что у есть функция от х, получим: еу ∙ у′ - е-х + у + ху′ =0, откуда
.
Задание 5.
Исследовать методами дифференциального исчисления и построить график
функции:
- кусочно – непрерывная функция.
Решение.
1) D(f) = (0,1)
(1,+
) , х = 1 - точка разрыва.
2) Функция не является ни четной, ни нечетной.
3) Находим асимптоты графика функции.
, т.е. х = 1 - вертикальная асимптота.
Наклонной и горизонтальной асимптоты нет, т.к.
,
.
4) Находим интервалы возрастания и убывания функции и ее экстремумы.
Условие
дает ln x–1= 0 или x = e - подозрительную на экстремум точку, которая вместе с точкой разрыва делит D(f) на 3 интервала монотонности. Составим таблицу, где определим знаки f′ (x) и направление монотонности для каждого интервала
| x | (0,1) | (1,e) | e | (e,+ )
|
| y |
|
| min |
|
| y′ | - | - | + |
на (0, 1) y′( e-1 ) = - 2 < 0
y - убывает ;
на ( 1, e) y′(e1/2) = -2 < 0
y - убывает ;
на (e, +
) y′( e2 ) =1/2 > 0
y – возрастает.
5) Находим интервалы выпуклости и вогнутости и точки ее перегиба.
Условие y′′ = ( -ln x + 2 )/ x ln3 x = 0 дает ln x = 2 или x = e2 подозрительную на перегиб точку, которая вместе с точкой разрыва разделяют D(f) на 3 интервала монотонности. Составим таблицу, где определим знак f′′(x) и направление выпуклости для каждого интервала.
| x | (0,1) | (1,e) | e2 | (e2,+ )
|
| y |
|
| т.п. e2/2 |
|
| y′′ | - | + | - |
на ( 0, 1 ) y ′′(1/ e) = -3e < 0
y - выпукла вверх;
на ( 1, e2 ) y ′′( e ) = e-1 > 0
y - выпукла вниз;
на ( e2,+
) y ′′(e3) = -1/27e-3 < 0
y - выпукла вверх.
6) Точек пересечения с осями координат нет.
7) Значения функции в граничных точках :
;
;
; 
8) Строим график функции
