ОБРАЗЕЦ РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ
Контрольная работа №8
По математической статистике
Задача 1
В результате проведения исследований получены следующие статистические данные (табл.1), где
– частота попадания вариант в промежуток
. Для выборки построить гистограмму относительных частот.
Задача 2
Вычислить числовые характеристики выборки (мода, медиана, выборочное среднее, выборочная дисперсия, среднее квадратическое отклонение, начальные и центральные моменты) и найти несмещенные оценки генерального среднего и генеральной дисперсии на основании данного распределения выборки (табл.2).
Задача 3
Найти доверительный интервал для неизвестного математического ожидания а случайной величины Х, распределенной нормально, если известны объем выборки n, выборочное среднее
, надежность
и среднее квадратическое отклонение
(табл.3).
Задача 4
Генеральная совокупность имеет нормальное распределение, для которого известно значение параметра
. Найти наименьший объем выборки, при котором доверительный интервал длиной
покрывает параметр а с надежностью
(табл.4).
Задача 5
Найти доверительный интервал для неизвестного среднего квадратического отклонения
нормально распределенной случайной величины Х, если известны объем выборки n, надежность
и выборочная дисперсия
(табл.5).
ОБРАЗЕЦ РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ
Задача 1
В результате проведения исследований получены следующие статистические данные (табл.1), где
– частота попадания вариант в промежуток (
]. Для выборки построить гистограмму относительных частот.
| i |
|
|
| 1 – 3 3 – 5 5 – 7 7 – 9 9 – 11 |
Решение.
Объём выборки n=60. Найдём относительные частоты:
w1=4/60, w2=10/60, w3=12/60, w4=11/60, w5=9/60.
Найдём плотности относительных частот, учитывая, что длина интервала h=2:
w1/h=0,08/2=0,04, w2/h=0,2/2=0,1, w3/h=0,24/2=0,12, w4/h=0,22/2=0,11, w5/h=0,18/2=0,9.
Построим на оси абсцисс данные частичные интервалы. Проведем над этими интервалами отрезки, параллельные оси абсцисс и находящиеся от неё на расстояниях, равных соответствующим плотностям относительной частоты.
Например, над интервалом (1,3) проведем отрезок, параллельный оси абсцисс и находящийся от неё на расстоянии, равном 0,04; аналогично строят остальные отрезки. Искомая гистограмма относительных частот изображена на рисунке ниже.

Задача 2
В ходе эксперимента получены данные наблюдений:
| |||||||
|
Для данной выборки выполнить следующее:
· Вычислить числовые характеристики выборки (мода, медиана, выборочное среднее, выборочная дисперсия, среднее квадратическое отклонение, начальные и центральные моменты);
· Найти несмещенные оценки генерального среднего и генеральной дисперсии.
Решение.
Найдем числовые характеристики данной выборки:
1. Минимальное и максимальное значение выборки:
.
2. Размах выборки:
.
3. Мода:
.
4. Так как вариационный ряд содержит четное число вариант (
), то медиана
.
5. Выборочное среднее:
.
6. Выборочная дисперсия:
.
7. Среднее квадратическое отклонение:
.
8. Начальные моменты:
,
,

9. Центральные моменты:
,
,
,


Несмещенной оценкой генерального среднего является выборочное среднее.
.
Для вычисления выборочной дисперсии воспользуемся формулой:
.
,
.
Находим несмещенную оценку дисперсии («исправленную» выборочную дисперсию):
.
Задача 3
Найти доверительный интервал для неизвестного математического ожидания а случайной величины Х, распределенной нормально, если известны объем выборки n=30, выборочное среднее
, надежность
и среднее квадратическое отклонение
.
Решение.
Построим доверительный интервал для математического ожидания при неизвестном параметре
. Воспользуемся формулой (30):
.
Для заданных
и
найдем значение
(см. Приложение 6). Тогда получим интервал, покрывающий
с надежностью 0,99:
.
Задача 4
Генеральная совокупность имеет нормальное распределение, для которого известно значение параметра
. Найти наименьший объем выборки, при котором доверительный интервал длиной
покрывает параметр а с надежностью
=0,95.
Решение.
Доверительный интервал для математического ожидания при известном параметре
определяется формулой (25):
или
, где
. По условию
, значит,
. Величину
найдем из уравнения
(см. Приложение 2). Тогда
.
Следовательно, наименьшим объемом выборки будет
.
Задача 5
Найти доверительный интервал для неизвестного среднего квадратического отклонения
нормально распределенной случайной величины Х, если известны объем выборки n=20, надежность
и выборочная дисперсия
.
Решение.
Доверительный интервал для неизвестного среднего квадратического отклонения
определяется формулой (37):
.
Вычислим
, тогда
. Найдем величину
по известному
(см. Приложение 7):
. Следовательно, интервал
является доверительным для параметра
с надежностью
.
ПОЯСНЕНИЕ
Номер варианта в контрольной работе №8 совпадает с последней цифрой номера зачетной книжки.
Таблица 1. Варианты задачи 1.
| Вариант | i |
|
| Вариант | i |
|
| |
| 3 – 7 7 – 11 11 – 15 15 – 19 19 – 23 | 4 – 6 6 – 8 8 – 10 10 – 12 12 – 14 | |||||||
| 4 – 8 8 – 12 12 – 16 16 – 20 20 – 24 | 1 – 5 5 – 9 9 – 13 13 – 17 17 – 21 | |||||||
| 2 – 4 4 – 6 6 – 8 8 – 10 10 – 12 | 5 – 7 7 – 9 9 – 11 11 – 13 13 – 15 | |||||||
| 7 – 9 9 – 11 11 – 13 13 – 15 15 – 17 | 2 – 5 5 – 8 8 – 11 11 – 14 14 – 17 | |||||||
| 5 – 8 8 – 11 11 – 14 14 – 17 17 –20 | 3 – 7 7 – 11 11 – 15 15 – 19 19 – 23 |
Таблица 2. Варианты задачи 2.
| Вариант | Распределение | Вариант | Распределение | ||
| -6 -2 3 6 |
| 4 8 10 14 | ||
| 12 14 16 8 |
| 12 24 38 26 | ||
| -10 -5 -1 4 |
| 2 6 8 9 | ||
| 25 44 16 15 |
| 20 13 12 5 | ||
| 4 8 16 24 |
| 3 6 8 14 | ||
| 31 14 28 27 |
| 8 14 16 18 | ||
| -3 1 4 8 |
| 10 14 16 22 | ||
| 12 13 10 25 |
| 13 24 14 9 | ||
| 16 20 22 30 |
| -6 -2 2 5 | ||
| 14 26 17 3 |
| 11 13 14 12 |
Таблица 3. Варианты задачи 3.
| Вариант | n |
|
|
| Вариант | n |
|
|
| |
| 0,9 | 0,9 | |||||||||
| 20,2 | 0,99 | 0,7 | 0,99 | |||||||
| 0,95 | 0,9 | 0,8 | ||||||||
| 0,95 | 0,9 | |||||||||
| 0,95 | 2,8 | 0,9 |
Таблица 4. Варианты задачи 4.
| Вариант |
|
|
| Вариант |
|
|
| |
| 1,8 | 0,9 | 0,8 | 2,4 | 0,95 | ||||
| 0,9 | 1,2 | 0,95 | ||||||
| 0,9 | 0,95 | |||||||
| 0,9 | 0,95 | |||||||
| 0,9 | 1,6 | 0,95 |
Таблица 5. Варианты задачи 5.
| Вариант | n |
|
| Вариант | n |
|
| |
| 0,95 | 0,99 | |||||||
| 0,95 | 0,99 | |||||||
| 0,95 | 0,99 | |||||||
| 0,95 | 0,99 | |||||||
| 0,95 | 0,99 |