Схемы и группы соединений обмоток трехфазных трансформаторов

Для электрификации сельского хозяйства применяют трехфазные трехстержневые трансформаторы. Трехфаз­ный трансформатор, образованный из трех однофазных, называется групповым. Групповые трансформаторы до­роже, занимают больше места, имеют более низкий к. п. д., но их применяют при боль­ших мощностях, так как трансформатор, собранный из трех однофазных, более удобен для перевозки, резерв стоит де­шевле (для резерва достаточно иметь одну фазу трансформатора). В групповом транс­форматоре токи холостого хода я магнит­ные потоки во всех фазах одинаковы, а в трехстержневом намагничивающие токи крайних фаз больше, чем в средней фазе, так как сопротивление участка магнитной цепи для магнитных потоков, создаваемых обмотками крайних фаз, больше, чем для средней. Эта несимметрия незначитель­ная и существенного значения не имеет, так как уже при небольшой нагрузке она сглажи­вается.

В советских трансформаторах обмотки соединяют в звезду или в треугольник. За границей, кроме того, при­меняют соединение обмоток в зигзаг, при котором ка­ждую фазу вторичной обмотки делят пополам и распо­лагают на двух различных стержнях (рис. 124). При сое­динении обмоток в зигзаг сглаживается несимметрия намагничивающих токов, но провода расходуется больше. В СССР "соединение обмоток в зигзаг не применяют, но в последнее время выпущена опытная партия трансформа­торов с соединением обмоток в зигзаг.

Схемы соединений обмоток трехфазных трансформа­торов, принятые в СССР, приведены на рисунке 125. В условном обозначении над чертой показано соединение обмоток высшего напряжения, под чертой — низшего напряжения, индекс 0 обозначает выведенную нулевую точку, а цифра показывает группу соединений обмоток. При соединении обмоток в звезду, которое обозначают знаком Y, концы обмоток соединяют вместе, а начала присоединяют к выводам. При соединении обмоток в треу­гольник, которое обозначают знаком Δ, начало первой фазной обмотки соединяют с концом второй, начало второй — с концом третьей и начало третьей — с концом первой. Точки обмоток а, в, с присоединяют к выводам.

Начала фазных обмоток высшего напряжения обо­значают буквами А, В, С, а концы их — буквами X, У, Z. Начала и концы обмоток низшего напряжения обозна­чают соответственно буквами а, в, с и х, у, z.

При включении трансформаторов на параллельную работу большое значение имеет способ соединения обмоток трансформатора, который определяется группой соеди­нения. Цифрой обозначают угол между векторами линей­ных напряжений обмоток высшего и низшего напряжений, отсчитанный в единицах углового смещения по часовой стрелке от вектора линейного напряжения обмотки высшего напряжения. За единицу углового смещения принят угол в 30°.

Необходимо отметить, что понятия начала и конца обмоток условны, но они необходимы для правильного соединения обмоток.

Первичная и вторичная обмотки намотаны на одном стержне и пронизываются одним и тем же магнитным потоком. Если обе обмотки намотаны в одну и ту же сто­рону и верхние зажимы обмоток принять за их начала, а нижние — за концы, то э. д. с, индуктируемые в обмотках, будут одинаково направлены, допустим, в данный момент от конца к началу (рис. 126, а), т. е э. д. с. направ­лены согласно и совпадают по фазе.

Если обмотки намотать в разные стороны, сохранив то же обозначение зажимов, то векторы э. д. с. будут направ­лены встречно (рис. 126, б). Встречно будут направлены векторы э д. с. и в том случае, когда поменять местами обозначения зажимов, верхний зажим вторичной обмотки обозначить буквой х, а нижний — буквой а (рис. 126, в).

Рассмотрим методику построения векторных диаграмм для определения группы соединения обмоток трансфор­маторов. При построении векторных диаграмм исходят из следующих соображений:

а) векторы фазных напряжений обмоток высшего и низшего напряжений одной фазы всегда параллельны, так как индуктируются одним и тем же магнитным потоком и могут быть направлены согласно или встречно в зави­симости от способа выполнения обмотки и обозначения зажимов;

б) если на схеме концы обмоток соединены в одной точке, то и на векторной диаграмме соответствующие точки векторов фазных напряжений, обозначенных теми же бук­вами, также соединены вместе.

Построим векторную диаграмму напряжений для группы соединения обмоток Y/Y0 — 12.

Векторная диаграмма фазных и линейных напряжений обмотки высшего напряжения, подключенной в данном случае к сети, определяется напряжением сети (рис. 127, а). Построим векторную диаграмму напряжений для обмотки низшего напряжения и определим группу соединений обмоток.

Так как векторы .фазных напряжений обмоток парал­лельны и направлены согласно, то вектор ха фазного напряжения фазы а проводим параллельно вектору фаз­ного напряжения ХА фазы А (рис. 127, а).

Так как на схеме точки х, у, z соединены вместе, то и соответствующие точки векторов будут соединены в одной точке.

Проводим из точки х вектор фазного напряжения ув, параллельно вектору УВ и далее проводим из той же точки вектор zc, параллельный вектору ZC. Соединяя точки а, в, с, получаем векторы линейных напряжений вторичной обмотки.

Для определения группы соединения обмоток перене­сем параллельно самому себе вектор линейного напряже­ния ав к вектору линейного напряжения АВ так, чтобы точки А и а совпали. Как видно из рисунка 127, а, угол между векторами равен 360°, или 360 : 30 = 12 единиц углового смещения, т. е. группа соединений обмоток 12. При встречном направлении векторов э. д. с. получим группу Y/Y0 — 6 (рис. 127, б).

Построим векторную диаграмму для группы Y/Δ — 11.

Векторная диаграмма напряжений обмотки высшего напряжения определяется напряжением сети (рис. 127, в). Строим векторную диаграмму для обмотки низшего напряжения. Вектор ха проводим параллельно вектору ХА. Так как на схеме точки а и у соединены вместе, то и на векторной диаграмме точки векторов a и y соеди­няем вместе. Из точки а проводим вектор ув параллельно вектору УВ. Так как на схеме точки в и z соединены вме­сте, то из точки в проводим вектор zc параллельно век­тору ZC.

В результате построения мы получили треугольник фазных и линейных напряжений обмотки низшего напря­жения авс. Для определения группы соединения пере­носим параллельно самому себе вектор линейного напря­жения ав к вектору линейного напряжения АВ так, чтобы точки А и а совпали. Угол между векторами линейных напряжений, отсчитанный по часовой стрелке от вектора линейного напряжения обмотки высшего напряжения, равен 330°, или 330 : 30 = 11 единиц углового смещения, т. е. группа соединения обмоток 11.

Если векторы э. д. с. обеих обмоток направлены встреч­но, то мы получим 5 группу (рис. 127, г).


 


Для выражения угла сдвига между векторами линей­ных напряжений используют циферблат часов. Вектор линейного напряжения обмотки высшего напряжения принимают за минутную стрелку и устанавливают на цифру 12, а вектор линейного напряжения обмотки низ­шего напряжения принимают за часовую стрелку и уста­навливают на цифру, соответствующую положению этого вектора на векторной диаграмме. Цифра, на которую ука­зывает часовая стрелка, определяет группу соединений обмоток трансформатора. В первом случае при соедине­нии обмоток Y/Y0 — 12 обе стрелки будут установлены на цифре 12, а при соединении обмоток Y/Δ — 11 — минутная стрелка на цифре 12, а часовая на цифре 11.

Группу соединений Y/Y0 — 12 применяют для транс­форматоров небольшой мощности напряжением 10/0,4 кв или 6/0,4 кв с выведенной нулевой точкой при смешанной осветительной и силовой нагрузке и напряжении с низ­кой стороны до 400 в.

Группу соединений Y/ Δ —11 применяют для транс­форматоров при напряжении больше 400 в на обмотке низшего напряжения, например в трансформаторах 6/0,525 кв; 10/0,525 кв; 35/10 кв; 35/6 кв.

Группу соединений Y0/ Δ — 11 применяют при напря­жении обмоток с высшей стороны 110 кв и выше.

Соединять обмотки в звезду выгодно при высших на­пряжениях, так как тогда на фазу подводится фазное напряжение, которое в раза меньше линейного, что дает возможность удешевить изоляцию обмотки.

Соединение треугольником обычно применяют при низких напряжениях и больших токах, что дает возмож­ность уменьшить сечение проводов обмоток, так как в этом случае фазный ток в проводах обмотки меньше раза линейного тока (рис. 128).

Если при соединении обмоток Y/Y отношение линей­ных напряжений на первичной и вторичной обмотках при холостом ходе равно коэффициенту трансформации k, то при соединении обмоток Y/Δ отношение линейных

напряжений равно k, а при соединении обмоток Δ /Y это отношение равно , где k—отношение фазных напряжений на первичной и вторичной обмотках трансфор­матора при холостом ходе.

На щитке трансформатора всегда указывают линейные напряжения и токи.

В современных трансформаторах сталь сердечника насыщена вследствие того, что допускают большие значе­ния магнитной индукции (свыше 1,4 тл), поэтому форма кривой тока холостого хода несинусоидальна (см § 1, гл. XII). Как известно из теоретической электротехники, несинусоидальную кривую тока можно разложить на ряд синусоидальных кривых — основную, третью гармони­ческую, пятую гармоническую и т. д. Значительную

 

 

величину имеет третья гармоническая тока, которую необходимо учитывать, рассматривая работу трансфор­матора. Например, при индукции в стали трансформа­тора 1,4 тл третья гармоника равна примерно 30% основ­ной составляющей намагничивающего тока (рис. 129). Из теоретической электротехника известно, что токи третьей гармоники во всех фазах одинаково направлены, т. е. во всех фазах они текут или от конца к началу обмотки фазы, или наоборот (рис. 129, б, в). Так как при соедине­нии обмотки трансформатора в звезду токи третьей гар­моники взаимно уравновешиваются, то отсутствие тока третьей гармоники в кривой тока

холостого хода делает ее синусоидальной, что приводит к искажению кривой магнитного потока: магнитный поток в магнитопроводе становится несинусоидальным и содержит третью гармо­нику. На рисунке 130, а показано построение кривой маг­нитного потока при синусоидальной форме намагничиваю­щего тока. В IV квадранте изображена синусоидальная кривая тока, а в I квадранте кривая зависимости маг­нитного потока Ф от величины намагничивающего тока с учетом насыщения стали. Построенная с помощью этой кривой кривая магнитного потока во II квадранте неси­нусоидальна, но ее можно разложить на две синусои­дальные гармонические составляющие — первую (основ­ную) Ф1 и третью Ф3.

Отсюда видно, что в трехстержневых трансформаторах, кроме основной составляющей магнитного потока Ф1, соз­даются третьи гармонические составляющие магнитных потоков, направленные во всех трех стержнях в одну и ту же сторону, поэтому они должны замыкаться по маслу, воздуху и стали бака трансформатора (рис. 130, б). Этот путь магнитного потока обладает очень малой магнитной приводимостью, вследствие чего третья гармоническая потока выражена слабо и практически не искажает кривой э. д. с. Но магнитные потоки третьей гармоники, замыкаясь по стали бака, стяжным болтам и другим стальным дета­лям, создают в стали вихревые токи, что повышает нагрев этих деталей и понижает к. п. д. трансформатора.

При магнитной индукции около 1,4 тл эти добавочные потери составляют около 10% основных потерь холостого хода, но при увеличении индукции эти потери быстро растут. Вследствие этого соединение обмоток Y/Y имеет ограниченное применение. Его применяют в трансформа­торах мощностью не более 1800 ква.

При соединении обмоток трансформатора по схеме Y/Δ или Δ/Y токи третьей гармоники, протекая во всех обмотках в одном направлении, замыкаются по контуру, образуемому обмотками, соединенными в треугольник (рис. 129, в). При наличии токов третьей гармоники в токе холостого хода кривая тока холостого хода будет пико-образной, форма кривой магнитного потока и э. д. б. — синусоидальны, поэтому магнитных потоков третьей гар­моники не будет и не будет тех вредных воздействий маг­нитных потоков третьей гармоники, как при соединении обмоток Y/Y- Поэтому предпочтение отдается схемам соединения обмоток Y/Δ и Δ/Y-

Пример. Дан трехфазный трансформатор мощностью SH = 240 ква, напряжением U1 = 6000 в, U20 = 400 в, Iн1 = 23,1 а, Iн2 = 347 а, соединение обмоток Y/Y0, Р0 = 1400 вт, Рk = 4900 вm, UK = 330 в, r1 = r'2, х1 = х’2.

Определить для этого трансформатора r1\, r2, х1, х2 и к. п. д. при номинальной нагрузке и cos ф2 = 0,8. Найти ΔU% при номинальной нагрузке и cosф2 = 0,8. Вычис­лить наивыгоднейший kнг.

Решение. При решении задач с трехфазными транс­форматорами сопротивления обмоток определяем для одной фазы. Находим zK:

Здесь UK делится на для того, чтобы найти UK фазное. Находим rк:

Здесь Рк делится на 3 для того, чтобы узнать мощность короткого замыкания на одну фазу. Находим хк:

Но так как rк = r1 + r'2, а xк = x1 + x'2 и по условию r1 = r'2 и х1 = х'2, находим сопротивления обмоток:

Найдены действительные сопротивления первичной обмотки r1 и х1, а для вторичной обмотки подсчитаны при­веденные сопротивления. Для того чтобы определить действительные сопротивления вторичной обмотки, находим коэффициент трансформации k:

Находим действительные сопротивления вторичной обмотки:

]

Находим изменение напряжения ΔU% при номинальной нагрузке трансформатора и cosф2=0,8:

Находим Ua%:

Определяем Uр%:

БИЛЕТ 26