Пищеварение в 12-пёрстной кишке. Ферменты, регуляция секреции. Субстраты и продукты гидролиза. Изменение секреции от состава пищи.
в двенадцатиперстной кишке пищевые массы подвергаются воздействию кишечного сока, желчи и сока поджелудочной железы.
Длина двенадцатиперстной кишки невелика, поэтому пища здесь не задерживается, и основные процессы пищеварения происходят в нижележащих отделах кишечника. Кишечный сок, образуемый железами слизистой оболочки двенадцатиперстной кишки, содержит большое количество слизи и фермент пептидазу, расщепляющий белки. Более слабое действие этот сок оказывает на жиры и крахмал. В нем содержится также фермент энтерокиназа, который активирует трипсиноген поджелудочного сока.
Клетки двенадцатиперстной кишки вырабатывают два гормона — секретин ихолецистокинин — панкреозимин, усиливающий секрецию поджелудочной железы.
Кислое содержимое желудка при переходе в двенадцатиперстную кишку приобретает щелочную реакцию под влиянием желчи, кишечного и поджелудочного сока.
рН дуоденального содержимого колеблется от 4.0 до 8.0.
В гидролизе питательных веществ, осуществляемом в двенадцатиперстной кишке, особенно значима роль сока поджелудочной железы вырабатывает пищеварительный сок, который выводится через проток в полость двенадцатиперстной кишки. У человека за сутки выделяется 1.5-2.0 л поджелудочного сока, представляющего собой прозрачную жидкость со щелочной реакцией (рН = 7.8-8.5). Сок поджелудочной железы богат ферментами, которые расщепляют белки, жиры и углеводы. Амилаза, лактаза, нуклеаза и липаза секретируются поджелудочной железой в активном состоянии и расщепляют соответственно крахмал, молочный сахар, нуклеиновые кислоты и жиры. Нуклеазы (трипсин и химотрипсин) образуются клетками железы в недеятельном состоянии в виде трипсиногена и химотрипсиногена. Трипсиноген в двенадцати перстной кишке под действием ее фермента энтерокиназы превращается в трипсин. В свою очередь, трипсин превращает химотрипсиноген в активный химотрипсин. Под влиянием трипсина и химотрипсина расщепляются белки и высокомолекулярные полипептиды до низкомолекулярных пептидов и свободных аминокислот.
Клетки печени непрерывно выделяют желчь, которая является одним из важнейших пищеварительных соков. У человека за сутки образуется около 500-1000 мл желчи.
Натощак желчь в кишечник не поступает, она направляется в желчный пузырь, где концентрируется и несколько изменяет свой состав.
В состав желчи входят желчные кислоты, желчные пигменты и другие органические и неорганические вещества. Желчные кислоты принимают участие в процессе переваривания жира. Желчный пигмент билирубин образуется как клетками печени, так и из гемоглобина в процессе разрушения там эритроцитов. Темный цвет желчи обусловлен наличием в ней этого пигмента.
Желчь повышает активность ферментов поджелудочного и кишечного соков, особенно липазы. Она эмульгирует жиры и растворяет продукты их гидролиза, чем способствует их всасыванию. Создавая щелочную реакцию в двенадцатиперстной кишке, желчь препятствует разрушению трипсина пепсином. Она выполняет и регуляторную роль, являясь стимулятором желче образования, желче-выделения, моторной и секреторной деятельности тонкого кишечника. Желчь обладает так же бактериостатическими свойствами, задерживая гнилостные процессы в кишечнике. Велика роль желчи во всасывании из кишечника жирорастворимых витаминов, холестерина, аминокислот и солей кальция.
Печень, образуя желчь, выполняет не только секреторную, но и экскреторную (выделительную) функцию. Основными органическими экскретами печени являются соли желчных кислот, билирубин, холестерин, жирные кислоты и лецитин, а также кальций, натрий, хлор, бикарбонаты. Попадая с желчью в кишечник, все эти вещества выводятся из организма.
3.Роль щитовидной и паращитовидной желез в регуляции концентрации и обмена кальция в организме.
Регуляция концентрации кальция в крови путем депонирования его в кости или мобилизации из костей определяется двумя гормонами с противоположными эффектами: кальцитонин парафолликулярных клеток щитовидной железы и паратгормон (паратиреоидный гормон, паратирин) околощитовидных желез.
Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутрь щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, Кроме того, в регуляции концентрации кальция и, главное, в его депонировании в кости принимает участие еще один гуморальный фактор - активная форма витамина Д3.
Кальцитонин и паратгормон регулируют концентрацию кальция в крови в зависимости от его концентрации – по принципу отклонения.
КАЛЬЦИТОНИН- пептидный гормон парафолликулярных клеток щитовидной железы, кроме этого он образуется в тимусе и легких. Стимулом для секреции является значительное повышение концентрации кальция в крови (выше 4,5 мМоль/л) гормоны желудочно-кишечного тракта, особенно гастрин. Этот гормон вместе с паратирином и кальцитриолом регулирует уровень кальция в крови, так же, как и два другие гормона основные эффекты оказывает на кости, кишечник и почки.
В костях облегчает минерализацию и подавляет резорбцию костной ткани. Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается.
В почках - снижает реабсорбцию кальция и усиливает обратное всасывание фосфатов.
В кишечнике эффекты в норме выражены очень слабо и заключаются в снижении всасывания кальция.
ПАРАТИРИН - гормон околощитовидных желез. Стимулом для выделения служит снижение концентрации кальция в крови ниже 2 мМоль/л. Инактивация гормона тоже происходит под влиянием концентрации кальция - при повышении концентрации иона в плазме просто происходит разрушение гормона. По физиологическим эффектам - антагонист кальцитонина, вместе с которым регулирует уровень кальция в крови. Рецепторы ПТГ — трансмембранные гликопротеины, связанные с G‑белком — в значительном количестве содержатся в костной ткани (остеобласты) и корковой части почек (эпителий извитых канальцев нефрона). Основной эффект паратирина - повышение концентрации кальция в крови
Известно, что в проксимальных канальцах, реабсорбировалась большая часть калия, профильтровавшегося в капсуле. В собирательных трубочках содержание калия было больше, чем профильтровалось. Объяснить это явление.
Видимо в собирательных трубочках работали натриевокалиевые обменники,которые забирали натрий в клетку и в замен давали калий! Они активировались альдостероном который усиливает реабсорбцию натрия.
Билет № 36
Гомеостаз,его механизмы.
Гомеостаз— относительное динамическое постоянство внутренней среды и устойчивость основных физиологических функций организма человека и животных.
Гомеостатические механизмы - регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне.
Основным механизмом поддержания гомеостаза является саморегуляция. Саморегуляция – этосвойство биологических систем автоматически устанавливать и поддерживать на определённом, относительно постоянном уровне те или иные физиологические или другие биологические показатели.
Незначительные отклонения одних констант могут приводить к существенным нарушениям обменных процессов, т. е. существуют жесткие константы, сдвиг которых неблагоприятно сказывается на организме в целом. К таким константам относят: осмотическое давление, рН, содержание глюкозы, кислорода, углекислого газа в крови.
Пластичные константы не имеют жестких границ и могут варьировать, при это нарушения в организме не произойдут. (количество форменных элементов крови, объем циркулирующей крови, скорость оседания эритроцитов).
Саморегуляция осуществляется при помощи прямых и обратных связей:
- прямая связь: предусматривает выработку управляющих воздействий на основании информации об отклонении константы или действии возмущающих факторов. Например, раздражение холодным воздухом терморецепторов кожи приводит к увеличению процессов теплопродукции.
- обратная связь:
1. Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры.
2. Положительная обратная связь, которая выражается в усилении изменения переменной. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.
Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.
Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность».