МАЛАЯ ВЫБОРКА. ПРАКТИКА ПРИМЕНЕНИЯ МАЛОЙ ВЫБОРКИ В КОММЕРЧЕСКОЙ ДЕЯТЕЛЬНОСТИ.

При контроле качества товаров в экономических исследованиях эксперимент может проводиться на основе малой выборки.

Под малой выборкой понимается несплошное статистическое обследование, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности. Объем малой выборки обычно не превышает 30 единиц и может доходить до 4-5 единиц.

В торговле к минимальному объему выборки прибегают, когда большая выборка или невозможна, или нецелесообразна (например, если проведение исследования связано с порчей или уничтожением обследуемых образцов).

Величина ошибки малой выборки определяется по формулам, отличным от формул выборочного наблюдения со сравнительно большим объемом выборки (n>100). Средняя ошибка малой выборки u(мю)м.в. вычисляется по формуле:

uм.в = корень(Gквадрат(м.в.)./ n),

где Gквадрат(м.в.) – дисперсия малой выборки.*это сигма*

По формуле (там номер стоит) имеем:

G0квадрат = Gквадрат * n/ (n-1).

Но поскольку при мало выборке n/(n-1) имеет существенное значение, то вычисление дисперсии малой выборки производится с учетом так называемого числа степеней свободы. Под числом степеней свободы понимается количество вариантов, которые могут принимать произвольные значения, не меняя величины средней. При определении дисперсии Gквадрат число степеней свободы равно n-1:

Gквадрат(м.в.) = сумма (xi– x(c волнистой чертой))/(n-1).

Предельная ошибка малой выборки Дм.в.(знак- треугольник) определяется по формуле:

= t* uм.в

При этом значение коэффициента доверия t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n. Для отдельных значений t и n доверительная вероятность малой выборки определяется по специальным таблицам Стьюдента, в которых даны распределения стандартизованных отклонений:

t = (x(c волнистой чертой) – x(с чертой)) /Gм.в.

Таблицы Стьюдента приводятся в учебниках по математической статистике. Вот некоторые значения из этих таблиц, характеризующие вероятность того, что предельная ошибка малой выборки не превзойдет t-кратную среднюю ошибку:

St = P [(x(c волнистой чертой) – x(с чертой) ≤ Дм.в].

По мере увеличения объема выборки распределение Стьюдента приближается к нормальному, и при 20 оно уже мало отличается от нормального распределения.

При проведении малых выборочных обследований важно иметь в виду, что чем меньше объем выборки, тем больше различие между распределением Стьюдента и нормальным распределением. При минимальном объеме выборки (n=4) это различие весьма существенно, что указывает на уменьшение точности результатов малой выборки.

Посредством малой выборки в торговле решается ряд практических задач, прежде всего установление предела, в котором находится генеральная средняя изучаемого признака.

Поскольку при проведении малой выборки в качестве доверительной вероятности практически принимается значение 0,95 или 0,99, то для определения предельной ошибки выборки Дм.в. используются следующие показания распределения Стьюдента.

ПРОГРАММНО-МЕТОДОЛОГИЧЕСКИЕ ВОПРОСЫ СТАТИСТИЧЕСКОГО НАБЛЮДЕНИЯ.

Цель наблюдения. Статистические наблюдения чаще всего преследуют практическую цель – получение достоверной информации для выявления закономерностей развития явлений и процессов. Задача наблюдения предопределяет его программу и формы организации. Неясно поставленная цель может привести к тому, что в процессе наблюдения будут собраны ненужные данные или, наоборот, не будут получены сведения, необходимые для анализа.

Объект и единица наблюдения. Отчётная единица.

При подготовке наблюдения кроме цели следует точно определить, что именно подлежит обследованию, т.е. установить объект наблюдения.

Под объектом наблюдения понимается некоторая статистическая совокупность, в которой протекают исследуемые социально-экономические явления и процессы. Объектом наблюдения может быть совокупность физических лиц (население отдельного региона), физические единицы (станки, машины), юридические лица (предприятия, коммерческие банки). Чтобы определить объект статистического наблюдения, необходимо установить границы изучаемой совокупности. Для этого следует указать важнейшие признаки, отличающие его от других сходных объектов. Всякий объект статистического наблюдения состоит из отдельных элементов – единиц наблюдения.

В статистике единицей наблюдения называют составной элемент объекта, являющийся носителем признаков, подлежащих регистрации.

Единицу наблюдения следует отличать от отчётной единицы. Отчётной единицей выступает субъект, от которого поступают данные о единице наблюдения. Единица наблюдения и отчётная единица могут совпадать. Например, если надо определить объём освоенных за год капитальных вложений, то предприятие – застройщик будет одновременно и единицей наблюдения, и отчитывающейся организацией.