Принципы построения качественных и количественных индексов. Индексы физического объёма, индексы цен.
Индексом в статистике называют относительный показатель, характеризующий изменение величины какого-либо явления (простого или сложного, состоящего из соизмеримых или несоизмеримых элементов) во времени, пространстве или по сравнению с любым эталоном (нормативом, планом, прогнозом и тд.). Когда рассматривается сопоставление уровней изучаемого явления во времени, то говорят об индексах динамики, в пространстве — о территориальных индексах, при сопоставлении с уровнем, например, договорных обязательств — об индексах выполнения обязательств и т.д. Основным элементом индексного отношения является индексируемая величина.
Индексный метод имеет свою терминологию и символику. Каждая индексируемая величина имеет обозначение: q - количество (объем) какого-либо продукта в натуральном выражении (от латинского слова quantitas); р - цена единицы товара (от латинского слова pretium); z - себестоимость единицы продукции; t - затраты времени на производство единицы продукции (трудоемкость); w - выработка продукции в стоимостном выражении на одного работника или в единицу времени;
v - выработка продукции в натуральном выражении на одного работника или в единицу времени; - Т - общие затраты времени (Г = tq) или численность работников;
П -_ посевная площадь; У - урожайность отдельны* культур и т.д. .pq - общая стоимость произведенной продукции данного вида или проданных товаров данного вида (товарооборот, выручка); zq - затраты на производство всей продукции (издержки производства); УП - валовой сбор отдельной культуры.
Чтобы различать, к какому периоду относятся индексируемые величины, принято возле символа индекса внизу справа ставить подстрочные знаки: 1 - для сравниваемых (текущих, отчетных) периодов и 0 — для периодов, с которыми производится сравнение (базисных периодов). Если изменение явлений изучается за ряд периодов, то каждый из периодов обозначается соответственно подстрочными знаками 0, 1, 2, 3 и т.д.
Индивидуальные индексы обозначаются буквой / и снабжаются подстрочным знаком индексируемого показателя: так iq — индивидуальный индекс объема произведенной продукции отдельного вида или количества (объема) проданного товара данного вида, ip — индивидуальный индекс цен и т.д.
Общий индекс обозначается буквой Jp и также сопровождается подстрочным знаком индексируемого показателя: Например, Jp — общий индекс цен; Jz — общий индекс себестоимости.
Индивидуальные индексы относятся к одному элементу (явлению) и не требуют суммирования данных. Они представляют собой относительные величины динамики, выполнения обязательств, сравнения. Выбор базы сравнения определяется целью исследования.
Расчет индивидуальных индексов прост, их определяют вычислением отношения двух индексируемых величин:
Индивидуальный индекс физического объема продукции iqрассчитывается по формуле .
где q1, q0 — количество (объем) произведенного одноименного товара в текущем (отчетном) и базисном периодах соответственно.
Индивидуальный индекс цен:
где q1, p0 — цена единицы одноименной продукции в отчетном и базисном периодах соответственно.
Индивидуальные индексы других показателей строятся аналогично. С аналитической точки зрения индивидуальные индексы характеризуют изменения индексируемой величины в текущем периоде по сравнению с базисным, т. е. во сколько раз она возросла (уменьшилась) или сколько процентов составляет ее рост (снижение). Значения индексов выражают в коэффициентах или процентах.
Каждый качественный показатель связан с тем или иных объемным показателем, в расчете на единицу которого он исчисляется. Так, с объемом произведенной (проданной)" продукции связаны такие качественные показатели, как цена р, себестоимость z и трудоемкость t.
Рассмотрим принципы построения агрегатных индексов качественных показателей на примере индекса цен.
Поскольку этот индекс характеризует изменение цен, индексируемой величиной в нем будет цена товара. Влияние количества проданных товаров должно быть устранено, а это возможно только в том случае, если количество продаваемых товаров неизменно в оба периода, т. е. количество товаров одного из периодов принято в качестве весов индекса.
При построении индекса цен в качестве весов индекса обычно берут количество товаров, проданных в текущем (отчетном) периоде. Это объясняется тем, что такое исчисление индекса цен позволяет определить не только относительное изменение цен (путем деления числителя индекса на его знаменатель , но и абсолютную экономию (-) или абсолютный перерасход (+) денежных средств покупателей в результате изменения цен на эти товары (как разность между числителем и знаменателем индекса): .
Агрегатный индекс с отчетными весами впервые предложен в 1874 г. немецким экономистом Г. Паше и носит его имя:
1) Формула агрегатного индекса Пааше: , где - фактическая стоимость продукции отчетного периода, - условная стоимость товаров, реализованных в отчетном периоде по базисным ценам. Индекс цен Пааше показывает, во сколько раз возрос (уменьшился) в среднем уровень цен на массу товара, реализованную в отчетном периоде, или сколько процентов составляет его рост (снижение) в отчетном периоде по сравнению с базисным периодом.
2) Индекс цен Ласпейресапоказывает, на сколько изменились цены в отчетном периоде по сравнений с базисным, но по той продукции, которая была реализована в базисном периоде, и экономию либо перерасход, который можно было бы получить от изменения цен. Иначе говоря, он показывает, во сколько раз товары базисного периода подорожали или подешевели в результате изменения цен на них в отчетном
периоде. .
3) «Идеальный» индекс цен Фишера, который представляет собой среднюю геометрическую из произведения двух агрегатных индексов цен Ласпейреса и Пааше: .
Идеальность формулы заключается в том, что индекс яв-ся обратимым во времени, т. е. при перестановке базисного и отчетного периодов полученный «обратный» индекс – это величина обратная величине первоначального индекса.
Индекс себестоимости продукции характеризует среднее изменение себестоимости единицы продукции отчетного периода по сопоставимому с базисным периодом кругу продукции. Формула агрегатного индекса себестоимости продукции имеет вид: , где - затраты на производство продукции отчетного периода, - затраты на произ-во той же прод-ии при условии, что себестоимость остается на уровне базисного.
Индекс себестоимости показывает, во сколько раз уменьшился (возрос) в среднем уровень себестоимости на продукцию, произведенную в отчетном периоде, или сколько процентов составляет его снижение (рост) в отчетном периоде по сравнению с базисным.