И технологии программирования 5 страница

Множественный доступ с контролем несущей подразделяется на:

• множественный доступ с обнаружением коллизий;

• множественный доступ с предотвращением коллизий;

Рассмотрим особенности каждого метода доступа.

Множественный доступ с контролем несущей и обнаружением кол­лизий (Carrier-Sense Multiple Access with Collision Detection, CSMA/CD). Все компьютеры в сети — и клиенты, и серверы — прослушивают ка­бель, стремясь обнаружить передаваемые данные, т.е. трафик. Ком­пьютер может начать передачу только тогда, когда убедится, что ка­бель свободен — трафик отсутствует. Пока кабель занят, ни один из компьютеров не может вести передачу. Если возникает коллизия, то эти компьютеры приостанавливают передачу на случайный интервал времени, а затем вновь стараются наладить связь. Причем периоды ожидания у них разные, что снижает вероятность одновременного во­зобновления передачи.

Название метода раскрывает его суть: компьютеры как бы прослушивают кабель, отсюда — контроль несущей. Чаще всего сразу не­сколько компьютеров в сети хотят передать данные, отсюда множе­ственный доступ. Прослушивание кабеля дает возможность обнару­жить коллизии, отсюда обнаружение коллизий.

Способность обнаруживать коллизии ограничивает область дей­ствия самого CSMA/CD. При длине кабеля > 2,5 км механизм об­наружения коллизий становится неэффективным - некоторые ком­пьютеры могут не услышать сигнал и начнут передачу, что приведет к коллизии и разрушению данных.

CSMA/CD является состязательным методом, так как компью­теры конкурируют между собой за право передавать данные. Он яв­ляется громоздким, но современные реализации настолько быстры, что пользователи не замечают, что сеть работает, используя состяза­тельный метод. Однако чем больше компьютеров в сети, тем интен­сивнее сетевой трафик, и число коллизий возрастает, а это приво­дит к уменьшению пропускной способности сети. Поэтому в некоторых случаях метод CSMA/CD все же оказывается недостаточ­но быстрым. Так, лавинообразное нарастание повторных передач способно парализовать работу всей сети. Вероятность возникновения подобной ситуации зависит от числа пользователей, работающих в сети, и приложений, с которыми они работают. Например, БД ис­пользуют сеть интенсивнее, чем ТП.

Множественный доступ с контролем несущей и предотвращением коллизий (Carrier-Sense Multiple Access with Collision Avoidance, CSMA/ CA). Этот метод самый непопулярный среди всех методов доступа. Каждый компьютер перед передачей данных в сеть сигнализирует о своем намерении, поэтому остальные компьютеры «узнают» о гото­вящейся передаче и могут избежать коллизий. Однако широковеща­тельное оповещение увеличивает общий трафик и уменьшает пропус­кную способность сети. Поэтому CSMA/CA работает медленнее, чем CSMA/CD.

Доступ с передачей маркера. Суть метода заключается в следую­щем: пакет особого типа, маркер (token), циркулирует от компьюте­ра к компьютеру. Чтобы послать данные в сеть, любой компьютер должен сначала «дождаться» прихода свободного маркера и «захва­тить» его. Захватив маркер, компьютер может передавать данные. Когда какой-либо компьютер наполнит маркер своей информацией и пошлет его по сетевому кабелю, другие компьютеры уже не смогут передавать данные, так как в каждый момент времени только один компьютер использует маркер. В сети не возникает ни состязания, ни коллизий, ни временных задержек.

Доступ по приоритету запроса (demand priority). Относительно новый метод доступа, разработанный для сети Ethernet со скоростью передачи 100 Мбит/с -100VG-AnyLan. Он стандартизован IEEE в категории 802.12. Этот метод учитывает своеобразную конфигурацию сетей lOOVG-AnyLan, которые состоят только из концентраторов и оконечных узлов. Концентраторы управляют доступом к кабелю, последовательно опрашивая каждый узел в сети и выявляя запросы на передачу. Концентратор должен знать все адреса связи и узлы и про­верять их работоспособность. Оконечным узлом в соответствии со спецификацией lOOVG-AnyLan может быть компьютер, мост, марш­рутизатор или коммутатор.

При доступе по приоритету запроса, как и при CSMA/CD, два компьютера могут конкурировать за право передать данные. Однако в этом методе реализуется принцип, по которому определенные типы данных, если возникло состязание, имеют соответствующий приори­тет. Получив одновременно два запроса, концентратор вначале от­дает предпочтение запросу с более высоким приоритетом. Если зап­росы имеют одинаковый приоритет, они будут выполнены в произвольном порядке.

Для сетей с использованием доступа по приоритету запроса раз­работана специальная схема кабеля, поэтому каждый компьютер мо­жет одновременно передавать и принимать данные. Применяется восъмипроводный кабель, по каждой паре проводов которого сигнал передается с частотой 25 Мгц.

 

7,6.2. Передача данных по сети

 

 

Данные, состоящие из нулей и единиц, обычно содержатся в больших по размерам файлах. Однако сети не будут нормально ра­ботать, если компьютер будет посылать такой блок данных целиком. В это время другие компьютеры вынуждены долго ждать своей оче­реди. Такая ситуация похожа на монопольное использование сети. При этом, кроме монопольного использования сети, возникновение ошибок может привести к необходимости повторной передачи всего большого блока данных Чтобы быстро, не тратя времени на ожидание, передавать ин­формацию по сети, данные разбиваются на маленькие управляемые блоки, содержащие все необходимые сведения для их передачи. Эти блоки называются пакетами. Под термином «пакет» подразумевает­ся единица информации, передаваемая между устройствами сети как единое целое.

При разбиении данных на пакеты сетевая ОС добавляет к каж­дому пакету специальную управляющую информацию, которая обес­печивает передачу исходных данных небольшими блоками, сбор дан­ных в определенном порядке (при их получении), проверку данных на наличие ошибок (после сборки).

Компоненты пакета группируются по трем разделам: заголовок, данные и трейлер.

Заголовок включает:

• сигнал о том, что передается пакет,

• адрес источника,

• адрес получателя,

• информацию, синхронизирующую передачу.

Для большинства сетей размер пакета составляет от 512 байт до 4 Кбайт.

Содержимое трейлера зависит от протокола связи (протокол — это набор правил или стандартов для осуществления связи и обмена информацией между компьютерами). Чаще всего трейлер содержит информацию для проверки ошибок, называемую избыточным цикли­ческим кодом (Cyclical Redundancy Check, CRC). CRC — это число, получаемое в результате математических преобразований данных па­кета и исходной информации. Когда пакет достигает места назначе­ния, эти преобразования повторяются. Если результат совпадает с CRC — пакет принимается без ошибок. В противном случае переда­ча пакета повторяется.

Формат и размер пакета зависят от типа сети. Максимальный размер пакета определяет количество пакетов, которое будет созда­но сетевой ОС для передачи большого блока данных.

7,6.3. Сети Ethernet

Ethernet — самая популярная сейчас архитектура. Используется в сетях любого размера. Ethernet —.это промышленный стандарт, нашедший широкую поддержку среди производителей сетевого обо­рудования. Поэтому проблем, связанных с использованием устройств разных производителей, почти не существует.

В конце 60-х гг. Гавайский университет разработал ГВС под на­званием ALOHA. Университет, расположенный на обширной терри­тории, решил объединить в сеть все компьютеры. Одной из ключе­вых характеристик созданной сети стал метод доступа CSMA/CD. Эта сеть послужила основой для современных сетей Ethernet. В 1972 г. в исследовательском центре Пало Альто фирмы Xerox разработали ка­бельную систему и схему передачи сигналов, а в 1975 г. — первый продукт Ethernet. Первоначальная версия Ethernet представляла со­бой систему со скоростью передачи 2,94 Мбит/с и объединяла более 100 компьютеров с помощью кабеля длиной 1 км. Сеть Ethernet фир­мы Xerox имела такой успех, что компании Xerox, Intel Corporation и Digital Equipment Corporation разработали стандарт Ethernet со ско­ростью передачи 10 Мбит/с. Сегодня его рассматривают как специ­фикацию, описывающую метод совместного использования среды передачи компьютерами и системами обработки данных. Специфи­кация Ethernet выполняет те же функции, что Физический и Каналь­ный уровни модели OSI.

Ethernet использует немодулированную передачу, топологию ши­на и метод доступа CSMA/CD. Другие используемые топологии -звезда-шина. Спецификация - IEEE 802.3. Скорость передачи дан­ных - 10 или 100 Мбит/с. Кабельная система - толстый и тонкий коаксиальный кабель, UTP.

Ethernet разбивает данные на пакеты (кадры), формат которых отличается от формата пакетов в других сетях. Длина 64—1518 бай­тов, но сама структура использует 18 байтов, поэтому остается 46— 1500 байтов.

Максимальная общая длина сети 925 м. Общее число компью­теров в сети достигает 1024.

7.6.4. Сети Token Ring

Версия сети Token Ring была представлена IBM в 1984 г. как часть предложенного фирмой способа объединения в сеть всего ряда выпускаемых IBM компьютеров и компьютерных систем. В 1985 г.

Token Ring стала стандартом ANSI/IEEE (ANSI -представитель ISO в США).

Сеть Token Ring является реализацией стандарта IEEE 802.5. От других сетей ее отличает не только наличие уникальной кабельной системы, но и использование метода доступа с передачей маркера. Топология типичной сети — звезда/кольцо. Соединение выполняет­ся через концентратор в виде звезды, а физическое кольцо реализу­ется в концентраторе. Кабельная система — UTP и STP. Скорость передачи - 4 и 16 Мбит/с.

Когда в сети начинает работать первый компьютер, он генери­рует маркер. Маркер проходит по кольцу от компьютера к компью­теру (направление движения маркера зависит от оборудования), пока один из них не сообщит о готовности передать данные и не возьмет управление маркером на себя. Маркер - это предопределенная по­следовательность бит, которая позволяет компьютеру отправить дан­ные по кабелю. Когда маркер захвачен каким-либо компьютером, другие передавать данные не могут. Захватив маркер, компьютер от­правляет кадр данных в сеть. Кадр проходит по кольцу, пока не дос­тигнет узла с адресом, соответствующим адресу приемника в кадре. Компьютер-приемник копирует кадр в буфер приема и делает помет­ку в поле статуса кадра о получении информации. Кадр продолжает передаваться по кольцу, пока не достигнет отправившего его компь­ютера, который и удостоверяется, что передача прошла успешно. Компьютер изымает кадр из кольца и возвращает туда маркер. В сети одномоментно может передаваться только один маркер, причем толь­ко в одном направлении.

Передача маркера — детерминистический процесс. Это значит, что самостоятельно начать работу в сети (как при методе доступа CSMA/CD) компьютер не может. Он может передавать данные толь­ко после получения маркера. Каждый компьютер действует как од­нонаправленный повторитель, регенерируя маркер и посылая его дальше по кольцу.

Основным компонентом сетей Token Ring является концентра­тор, реализующий физическое кольцо. В сети с передачей маркера вышедший из строя компьютер или соединение останавливают дви­жение маркера, что ведет к прекращению работы всей сети. Концен­траторы разработаны таким образом, чтобы обнаруживать вышедшую из строя плату СА и вовремя отключать ее. Эта процедура позволяет обойти отказавший компьютер, поэтому маркер продолжает цирку­лировать по сети.

7,7. Сетевые протоколы

Протоколы — это набор правил и процедур, регулирующих по­рядок осуществления некоторой связи. Протоколы реализуются во всех областях деятельности человека, например, дипломатических. В сетевой среде — это правила и технические процедуры, позволяю­щие нескольким компьютерам общаться друг с другом.

Различают три определяющих свойства протоколов:

1. Каждый протокол предназначен для различных задач и имеет
свои преимущества и недостатки.

2. Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает.

3. Несколько протоколов могут работать совместно. В этом случае они образуют так называемый стек, или набор протоколов. Как
сетевые функции распределяются по всем уровням модели OSI, так
и протоколы совместно работают на различных уровнях стека.- На­
пример, Прикладной уровень протокола TCP/IP соответствует уровню Представления модели OSI. В совокупности протоколы опреде­ляют полный набор функций и возможностей стека.

Передача данных по сети должна быть разбита на ряд последо­вательных шагов, каждому из которых соответствует свой протокол. Эти шаги должны выполняться на каждом сетевом компьютере в одной и той же последовательности. На компьютере-отправителе они выполняются сверху вниз, а на компьютере-получателе — снизу вверх.

Компьютер-отправитель в соответствии с протоколом выполня­ет следующие действия: разбивает данные на небольшие блоки — пакеты, с которыми может работать протокол; добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог опреде­лить, что эти данные предназначены именно ему; подготавливает данные к передаче через плату СА по сетевому кабелю.

Компьютер-получатель в соответствий с протоколом выполняет те же действия, но в обратном порядке. Он принимает пакеты дан­ных из сетевого кабеля и через плату СА передает пакеты в компью­тер. Затем он удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем; копирует данные из пакета в бу­фер для их объединения в исходный блок данных; передает прило­жению собранный из пакетов блок данных в том формате, который использует это приложение.

И компьютеру-отправителю, и компьютеру-получателю необхо­димо выполнять каждое действие одинаковым способом, чтобы от­правленные данные совпали с полученными.

До середины 80-х гг. большинство ЛВС были изолированными. С развитием ЛВС и увеличением объема передаваемой ими инфор­мации они стали компонентами больших сетей. Данные, передавае­мые из одной локальной сети в другую по одному из возможных мар­шрутов, называются маршрутизированными, а протоколы, поддерживающие передачу данных между сетями по нескольким мар­шрутам, - маршрутизируемыми. Такие протоколы служат для объе­динения локальных сетей, поэтому их роль постоянно возрастает.

Модель OSI помогает определить, какие протоколы нужно ис­пользовать на каждом ее уровне. Продукты разных производителей, которые соответствуют этой модели, способны вполне корректно взаимодействовать друге другом. ISO, IEEE, ANSI, ITU (International Telecommunications Union) и другие организации по стандартизации разработали протоколы, соответствующие некоторым уровням моде­ли OSI,

TCP/IP ~ стандартный промышленный набор протоколов, обеспе­чивающий связь в неоднородной среде, т.е. между компьютерами разных типов. Совместимость — одно из основных преимуществ TCP/IP, поэтому его поддерживают большинство ЛВС. Кроме того, TCP/IP предоставляет маршрутизируемый протокол для корпоратив­ных сетей и доступ в Интернет. Из-за своей популярности TCP/IP стал стандартом де-факто для межсетевого взаимодействия. У TCP/ IP есть два главных недостатка: большой размер и недостаточная скорость работы. Но для современных ОС это не является пробле­мой (проблема только у DOS-клиентов), а скорость работы сравни­ма со скоростью работы протокола IPX.

Стек TCP/IP включает и другие протоколы:

• SMTP (Simple Mail Transfer Protocol) - для обмена E-mail;

• FTP (File Transfer Protocol) — для обмена файлами;

• SNMP (Simple Network Management Protocol) — для управле­ния сетью.

TCP/IP разрабатывался специалистами МО США как маршру­тизируемый, надежный и функциональный протокол. Он также пред­ставляет собой набор протоколов для ГВС. Его назначение - обес­печивать взаимодействие между узлами даже в случае ядерной войны. Сейчас ответственность за разработку TCP/IP возложена на сообще­ство Интернет в целом. Установка и настройка TCP/IP требует зна­ний и опыта со стороны пользователя, однако применение TCP/IP предоставляет ряд существенных преимуществ.

Протокол TCP/IP в точности не соответствует модели OSI. Вме­сто семи уровней в нем используется только четыре:

1. Уровень сетевого интерфейса.

2. Межсетевой уровень.

3. Транспортный уровень.

4. Прикладной уровень.

Каждый из них соответствует одному или нескольким уровням модели OSI.

Уровень сетевого интерфейса, относящийся к Физическому и Канальному уровням модели OSI, напрямую взаимодействует с се­тью. Он реализует интерфейс между сетевой архитектурой (Ethernet или Token Ring) и Межсетевым уровнем.

Межсетевой уровень, относящийся к Сетевому уровню модели OSI, использует несколько протоколов для маршрутизации и достав­ки пакетов. Для этого используются маршрутизаторы, которые ра­ботают на Сетевом уровне и могут переадресовывать и маршрутизи­ровать пакеты через множество сетей, обмениваясь информацией между отдельными сетями.

Транспортный уровень, соответствующий Транспортному уровню модели OSI, отвечает за установку и поддержание соединения меж­ду двумя хостами. Транспортный уровень отвечает также за отправ­ку уведомлений о получении данных, управление потоком, упорядо­чение пакетов и их повторную передачу. Transmission Control Protocol (TCP) отвечает за надежную передачу данных между узлами. Это ори­ентированный на соединение протокол, поэтому он устанавливает се­анс связи между двумя компьютерами прежде, чем начать передачу.

Прикладной уровень, соответствующий Сеансовому, Представи­тельскому и Прикладному уровням модели OSI, соединяет в сети приложения.

7.8, Среда клиент-сервер

Раньше сетевые системы основывались на модели централизован­ных вычислений, в которой один мощный сервер — мейнфрейм вы­полнял основную работу в сети, а пользователи получали доступ к нему при помощи недорогих и низкопроизводительных компьюте­ров - терминалов. В результате развития персональных компьюте­ров централизованную модель заменила модель клиент-сервер, пре­доставляющая при той же производительности возможности сетевой обработки данных.

В настоящее время большинство сетей использует модель клиент-сервер. Сеть архитектуры клиент-сервер — это сетевая среда, в кото­рой компьютер-клиент инициирует запрос компьютеру-серверу, вы­полняющему этот запрос. Рассмотрим работу модели на примере системы управления БД - приложения, часто используемого в среде клиент-сервер. В модели клиент-сервер ПО клиента использует язык структурированных запросов SQL (Structured Query Language), кото­рый переводит запрос с языка, понятного пользователю, на язык, понятный машине. SQL близок к естественному английскому.

Клиент (пользователь) генерирует запрос с помощью интерфейс­ного приложения, которое обеспечивает интерфейс пользователя, формирует запросы и отображает данные, полученные с сервера. В клиент-серверной среде сервер не наделяется пользовательским ин­терфейсом. Представлением данных в удобной форме занимается сам клиент. Компьютер-клиент получает инструкции от пользователя, готовит их для сервера, а затем по сети посылает ему запрос. Сервер обрабатывает запрос, проводит поиск необходимых данных и отсы­лает их клиенту. Клиент в удобной для пользователя форме отобра­жает полученную информацию. В клиент-серверной среде пользова­тель компьютера-клиента имеет дело с экранной формой. В ней он задает необходимые параметры информации. Интерфейсная часть одну и ту же информацию может представлять в различном виде.

Сервер в клиент-серверной среде обычно предназначен для хра­нения данных и управления ими, Именно сервер выполняет боль­шинство операций с данными. Сервер называют также прикладной частью модели клиент-сервер, так как именно он выполняет запро­сы клиентов. Обработка данных на сервере состоит из их сортировки извлечения затребованной информации и отправки ее по адресу пользователя. ПО предусматривает также обновление, удаление, до­бавление и защиту информации.

Технология клиент-сервер создает мощную среду, обладающую множеством реальных преимуществ. В частности, хорошо спланиро­ванная клиент-серверная система обеспечивает относительно недо­рогую платформу, которая обладает в то же время вьГчислительными возможностями мэйнфрейма и легко настраивается на выполнение . конкретных задач. Кроме того, в среде клиент-сервер резко умень­шается сетевой трафик, так как по сети пересылаются только резуль­таты запросов. Файловые операции выполняются в основном более мощным сервером, поэтому запросы лучше обслуживаются. Это оз­начает, что нагрузка на сеть распределяется более равномерно, чем в традиционных сетях на основе файл-сервера. Уменьшается потреб­ность компьютеров-клиентов в ОЗУ, так как вся работа с файлами выполняется на сервере. По этой же причине на,компьютерах-кли­ентах уменьшается потребность в дисковом пространстве. Упро­щается управление системой, контроль ее безопасности становится проще, так как все файлы и данные размещаются на сервере. Упро­щается резервное копирование.

7.9. Internet как иерархия сетей

Слово Internet происходит от выражения interconnected networks {связанные сети). Это глобальное сообщество малых и больших се­тей. В широком смысле - это глобальное информационное простран­ство, хранящее огромное количество информации на миллионах ком­пьютеров, которые обмениваются данными.

К концу 1969 г. в США был завершен проект ARPAnet подклю­чением в одну компьютерную сеть 4 исследовательских центров: University of California Los Angeles, Stanford Research Institute, University of California at Santa Barbara, University of Utah. Проект также предусматривал проведение экспериментов в области компь­ютерных коммуникаций, изучение способов поддержания связи в ус­ловиях ядерного нападения и разработку концепции децентрализо­ванного управления военными и гражданскими объектами в период ведения войн. В 1972 г. Минобороны США начало разработку но­вой программы Internetting Project с целью изучения методов соеди­нения сетей между собой. Выдвигались требования максимальной на­дежности передачи данных при заведомо низком качестве коммуникаций, средств связи и оборудования и возможности пере­дачи больших объемов информации. В 1974 г. была поставлена зада­ча разработки универсального протокола передачи данных, которая была решена созданием протокола передачи данных и объединения сетей — Transmission Control Protocol/Internet Protocol (TCP/IP). В 1983 г. был осуществлен перевод ARPAnet на TCP/IP. В 1989 г. в Европейской лаборатории физики элементарных частиц (CERN, Швейцария, Женева) Тим Бернерс-Ли разработал технологию гипер­текстовых документов — World Wide Web, позволяющую пользовате­лям иметь доступ к любой информации, находящейся в сети Интер­нет на компьютерах по всему миру. К 1995 г. темпы роста сети показали, что регулирование вопросов подключения и финансиро­вания не может находиться в руках одного Национального научного фонда США, и в этом же году произошла передача региональным сетям оплаты за подсоединение многочисленных частных сетей к на­циональной магистрали.

Рассмотрим схему подключения компьютера к Интернет и про­следим, по каким каналам передается информация, посылаемая в Сеть и принимаемая из Сети. Подключение к Интернету домашнего компьютера выполняется, как правило, с помощью модема (рис. 7.8). При этом чаще всего осуществляется так называемое сеансовое со­единение с провайдером по телефонной линии. Набирается один из телефонных номеров, предоставленных провайдером, для соединения с одним из его модемов, У провайдера имеется набор модемов, так называемый модемный пул. После того, как вы соединились с ISP (Internet Service Provider), ваш компьютер становится частью сети данного ISP. Каждый провайдер имеет свою магистральную линию или backbone.

ISP-провайдеры имеют так называемые точки присутствия POP (Point of Presence), где происходит подключение локальных пользо­вателей. Провайдер может иметь точки присутствия POP в несколь­ких городах. В каждом городе находятся аналогичные модемные пулы, на которые звонят локальные клиенты этого провайдера в дан­ном городе. Провайдер обычно арендует волоконно-оптические ли-

 

 

Рис. 7.8. Схема подключения компьютера к Internet

 

нии у телефонной компании для соединения всех своих точек при­сутствия. Крупные коммуникационные компании имеют собствен­ные высокопропускные каналы.

Пусть имеются опорные сети двух Интернет-провайдеров. Оче­видно, что все клиенты провайдера А могут взаимодействовать меж­ду собой по собственной, сети, а все клиенты провайдера В — по сво­ей, но при отсутствии связи между сетями А и В клиенты разных провайдеров не могут связаться друг с другом. Для реализации та­кой услуги провайдеры А и В подключаются к так называемым точ­кам доступа NAP (Network Access Points) в разных городах, и трафик между двумя сетями течет через NAP. Аналогично организуется под­ключение к другим магистральным сетям, в результате чего образу­ется объединение множества сетей высокого уровня. В Интернете действуют сотни крупных провайдеров, их магистральные сети свя­заны через NAP в различных городах, и миллиарды байтов данных текут по разным сетям через NAP-узлы.

В офисе компьютеры, скорее всего, подключены к локальной сети. В этом случае рассмотренная схема видоизменяется. Варианты подключения к провайдеру могут быть различными, хотя чаще всего это выделенная линия.

На сегодняшний день существует множество компаний, имею­щих собственные опорные сети (бэкбоуны), которые связываются с помощью NAP с сетями других компаний по всему миру. Благодаря этому каждый, кто находится в Интернете, имеет доступ к любому его узлу, независимо от того, где он расположен территориально.

Скорость передачи информации на различных участках Интер­нета существенно различается. Магистральные линии — это высоко­скоростные каналы, построенные на основе волоконно-оптических кабелей. Кабели обозначаются ОС (optical carrier), например ОС-3, ОС-12 или ОС-48. Так, линия ОС-3 может передавать 155 Мбит/с, а ОС-48 — 2488 Мбит/с (2,488 Гбит/с). Но максимальная скорость по­лучения информации на домашний компьютер с модемным подклю­чением не превышает 56 Кбит/с.

Как же происходит передача информации по всем этим много­численным каналам? Доставка информации по нужному адресу вы­полняется с помощью маршрутизаторов, определяющих, по какому маршруту передавать информацию. Маршрутизатор — это устрой­ство, которое работает с несколькими каналами, направляя в выб­ранный канал очередной блок данных. Выбор канала осуществляет­ся по адресу, указанному в заголовке поступившего сообщения.

Таким образом, маршрутизатор выполняет две взаимосвязанные функции. Во-первых, он направляет информацию по свободным ка­налам, предотвращая закупорку узких мест в Сети; во-вторых, про­веряет, что информация следует в нужном направлении. При объе­динении двух сетей маршрутизатор включается в обе сети, пропуская информацию из одной в другую. В некоторых случаях он осуществ­ляет перевод данных из одного протокола в другой, при этом защи­щая сети от лишнего трафика. Эту функцию маршрутизаторов мож­но сравнить с работой службы ГИБДД, которая ведет наблюдение за автомобильным движением с вертолета и сообщает водителям опти­мальный, маршрут.

7,9.1. Протоколы интернет

Различают два типа протоколов: базовые и прикладные. Базовые протоколы отвечают за физическую пересылку сообщений между компьютерами в сети Internet. Это протоколы IP и TCP Прикладны­ми называют протоколы более высокого уровня, они отвечают за функционирование специализированных служб. Например, протокол HTTP служит для передачи гипертекстовых сообщений, протокол FTP — для передачи файлов, SMTP — для передачи электронной почты.

Набор протоколов разных уровней, работающих одновременно, называют стеком протоколов. Каждый нижележащий уровень стека протоколов имеет свою систему правил и предоставляет сервис вы­шележащим. Аналогично каждый протокол в стеке протоколов вы­полняет свою функцию, не заботясь о функциях протокола другого уровня.

На нижнем уровне используются два основных протокола: IP (Internet Protocol - протокол Интернет) и TCP (Transmission Control Protocol - протокол управления передачей). Архитектура протоколов TCP/IP предназначена для объединения сетей. В их качестве могут выступать разные ЛВС (Token Ring, Ethernet и др.), различные на­циональные, региональные и глобальные сети. К этим сетям могут подключаться машины разных типов. Каждая из сетей работает в соответствии со своими принципами и типом связи. При этом каж­дая сеть может принять пакет информации и доставить его по ука­занному адресу. Таким образом, требуется, чтобы каждая сеть имела некий сквозной протокол для передачи сообщений между двумя вне­шними сетями.

Предположим, имеется некое послание, отправляемое по элект­ронной почте. Передача почты осуществляется по прикладному про­токолу SMTP, который опирается на протоколы TCP/IP. Согласно протоколу TCP, отправляемые данные разбиваются на небольшие пакеты фиксированной структуры и длины, маркируются таким об­разом, чтобы при получении данные можно было бы собрать в пра­вильной последовательности.