АНАЛИЗ ОТНОСИТЕЛЬНЫХ ВЕЛИЧИН
Относительные величины особенно часто используются для более углубленного анализа общественного здоровья и деятельности учреждений здравоохранения, а также деятельности медицинского работника. Они применяются для изучения совокупности, которая характеризуется, главным образом, качественными номинальными признаками, типа «болеет - не болеет», «есть – нет», «городской - сельский» и т.д.. В этом случае исследователя интересует доля объектов с заданными свойствами в некоторой совокупности.
| Например, в районе А в текущем году было зарегистрировано 500 случаев инфекционных заболеваний, из них: эпидемического паротита - 60 случаев; кори - 100 случаев; прочих инфекционных заболеваний - 340 случаев. Структура инфекционных заболеваний выглядит следующим образом: вся совокупность - 500 случаев инфекционных заболеваний принимается за 100 %, составные части определяются как искомые. Удельный вес случаев эпидемического паротита составит: 60 x 100% / 500 = 12% и т.д. |
Удобно относительные величины представлять в виде круговых диаграмм
Рисунок 19. Диаграмма относительных величин
Относительная частота (доля) р определяется следующим образом:
(может быть в %), (16)
где k – число случаев интересующего признака, n – объем выборки.
Поскольку р определяется по выборке, она отражает генеральную долю с некоторой ошибкой.
Стандартная ошибка доли
(17)
Иногда при малых выборках получаются так называемые нулевой или стопроцентный эффекты, т.е. объекты с интересующим нас признаком или вообще не встречаются или встречаются в 100% случаев. Вряд ли такие выводы можно перенести на всю генеральную совокупность, несмотря на то, что стандартная ошибка при этом буде равна нулю. Для статистической обработки нулевого (или 100%) эффекта вводится скорректированное значение доли
(18)
где a – число объектов с заданными свойствами.
| Пример. Выборочные данные по заболеваемости гепатитом среди наркоманов приведены в таблице 21. Из нее видно, что частота составляет 6 человек из 6, т.е. 100%. Таблица 21. Заболеваемость гипатитом
Стопроцентный эффект с поправкой составит
Доля лиц без гепатита среди наркоманов (нулевой эффект)
|
Сравнение относительной частоты встречаемости признака в различных независимых совокупностях – одна из наиболее часто решаемых задач медицинских исследований. Нулевой гипотезой при этом является предположение о равенстве двух генеральных долей. Для проверки можно использовать критерий Стъюдента:
(19)
Критическое значение t-критерия находится по таблице для заданного уровня значимости и числа степеней свободы f = n1 + n2 – 2 (Приложение 2).
Если tвыч ≥ tкрит , то принимается альтернативная гипотеза, если tвыч < tкрит – то нулевая.
Контрольное задание 6:
Во время эпидемии гриппа изучалась эффективность прививок против этого заболевания. Получены следующие результаты:
Таблица 22. Данные к заданию
| С прививкой | Без прививки | ||
| заболели | не заболели | заболели | не заболели |
Указывают ли эти результаты на эффективность прививок? Сформулируйте нулевую и альтернативную гипотезы. Принять α = 0,05.
ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ
Любая выборка дает лишь приближенное представление о генеральной совокупности, и все выборочные статистические характеристики (средняя, мода, дисперсия…) являются некоторым приближением или говорят оценкой генеральных параметров, которые вычислить в большинстве случаев не представляется возможным из-за недоступности генеральной совокупности (Рисунок 20).
Рисунок 20. Ошибка выборки
Но можно указать интервал, в котором с определенной долей вероятности лежит истинное (генеральное) значение статистической характеристики. Этот интервал называется доверительный интервал (ДИ).
Так генеральное среднее значение с вероятностью 95% лежит в пределах
от
до
, (20)
где t – табличное значение критерия Стъюдента для α=0,05 и f=n-1
Может быть найден и 99% ДИ, в этом случае t выбирается для α=0,01.
Какое практическое значение имеет доверительный интервал?
· Широкий доверительный интервал показывает, что выборочная средняя неточно отражает генеральную среднюю. Обычно это связано с недостаточным объемом выборки, или же с ее неоднородностью, т.е. большой дисперсией. И то и другое дают большую ошибку среднего и, соответственно, более широкий ДИ. И это является основанием вернуться на этап планирования исследования.
· Верхние и нижние пределы ДИ дают оценку, будут ли результаты клинически значимы
Остановимся несколько подробнее на вопросе о статистической и клинической значимости результатов исследования групповых свойств. Вспомним, что задачей статистики является обнаружение хоть каких-либо отличий в генеральных совокупностях, опираясь на выборочные данные. Задачей клиницистов является обнаружение таких (не любых) различий, которые помогут диагностике или лечению. И не всегда статистические выводы являются основанием для клинических выводов. Так, статистически значимое снижение гемоглобина на 3 г/л не является поводом для беспокойства. И, наоборот, если какая-то проблема в организме человека не имеет массового характера на уровне всей популяции, это не основание для того, чтобы этой проблемой не заниматься.
| Это положение рассмотрим на примере. Исследователи задались вопросом, не отстают ли в росте от своих сверстников мальчики, перенесшие некое инфекционное заболевание. С этой целью было проведено выборочное исследование, в котором приняли участие 10 мальчиков, перенесших эту болезнь. Результаты представлены в таблице 23.
Таблица 23. Результаты статобработки
Из этих расчетов следует, что выборочный средний рост мальчиков 10 лет, перенесших некое инфекционное заболевание, близок к норме (132,5 см). Однако нижний предел доверительного интервала (126,6 см) свидетельствует о наличии 95% вероятности того, что истинный средний рост этих детей соответствует понятию «низкий рост», т.е. эти дети отстают в росте. В этом примере результаты расчетов доверительного интервала клинически значимы. |




(см)