Структурная и приведенная формы модели
Система совместных, одновременных уравнений (или структурная форма модели) обычно содержит эндогенные и экзогенные переменные.
Эндогенные переменные – это зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через y.
Экзогенные переменные – это предопределенные переменные, влияющие на эндогенные переменные, но не зависящие от них. Обозначаются через x.
Классификация переменных на эндогенные и экзогенные зависит от теоретической концепции принятой модели. Экономические переменные могут выступать в одних моделях как эндогенные, а в других как экзогенные переменные. Внеэкономические переменные (например, климатические условия, социальное положение, пол, возрастная категория) входят в систему только как экзогенные переменные. В качестве экзогенных переменных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые переменные).
Структурная форма модели позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регулирования. Меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменных.
Структурная форма модели в правой части содержит при эндогенных переменных коэффициенты и экзогенных переменных – коэффициенты , которые называются структурными коэффициентами модели. Все переменные в модели выражены в отклонениях от среднего уровня, т.е. под x подразумевается , а под y – соответственно . Поэтому свободный член в каждом уравнении системы (3.3) отсутствует.
Использование МНК для оценивания структурных коэффициентов модели дает, как принято считать в теории, смещенные и несостоятельные оценки. Поэтому обычно для определения структурных коэффициентов модели структурная форма модели преобразуется в приведенную форму модели.
Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных:
(3.4)
где – коэффициенты приведенной формы модели, – остаточная величина для приведенной формы.
По своему виду приведенная форма модели ничем не отличается от системы независимых уравнений, параметры которой оцениваются традиционным МНК. Применяя МНК, можно оценить , а затем оценить значения эндогенных переменных через экзогенные.
Коэффициенты приведенной формы модели представляют собой нелинейные функции коэффициентов структурной формы модели.
Рассмотрим пример простейшей структурной модели, Выразим коэффициенты приведенной формы модели через коэффициенты структурной модели.
Для структурной модели вида
(3.5)
приведенная форма модели имеет вид
(3.6)
Из первого уравнения (3.5) можно выразить следующим образом (ради упрощения опускаем случайную величину):
.
Подставляя во второе уравнение (3.5), имеем
,
откуда
.
Поступая аналогично со вторым уравнением системы (3.5), получим
,
т.е. система (3.5) принимает вид
Таким образом, можно сделать вывод о том, что коэффициенты приведенной формы модели будут выражаться через коэффициенты структурной формы следующим образом:
Следует заметить, что приведенная форма модели хотя и позволяет получить значения эндогенной переменной через значения экзогенных переменных, но аналитически она уступает структурной форме модели, так как в ней отсутствуют оценки взаимосвязи между эндогенными переменными.
Проблема идентификации
При переходе от приведенной формы модели к структурной сталкиваются с проблемой идентификации. Идентификация – это единственность соответствия между приведенной и структурной формами модели.
Структурная модель (3.3) в полном виде содержит параметров, а приведенная форма модели в полном виде содержит параметров. Т.е. в полном виде структурная модель содержит большее число параметров, чем приведенная форма модели. Соответственно параметров структурной модели не могут быть однозначно определены из параметров приведенной формы модели.
С позиции идентифицируемости структурные модели можно подразделить на три вида:
1) идентифицируемые;
2) неидентифицируемые;
3) сверхидентифицируемые.
Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты модели оцениваются через параметры приведенной формы модели и модель идентифицируема.
Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.
Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. В этой модели число структурных коэффициентов меньше числа коэффициентов приведенной формы. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов исчисления параметров.
Структурная модель всегда представляет собой систему совместных уравнений, каждое из которых требуется проверять на идентификацию. Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель содержит хотя бы одно сверхидентифицируемое уравнение.
Выполнение условия идентифицируемости модели проверяется для каждого уравнения системы. Чтобы уравнение было идентифицируемо, необходимо, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутствующих в системе, было равно числу эндогенных переменных в данном уравнении без одного.
Если обозначить число эндогенных переменных в i-м уравнении системы через H, а число экзогенных (предопределенных) переменных, которые содержатся в системе, но не входят в данное уравнение, – через D, то условие идентифицируемости модели может быть записано в виде следующего счетного правила:
Таблица 4.1
уравнение идентифицируемо | |
уравнение неидентифицируемо | |
уравнение сверхидентифицируемо |
Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема.
Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации. Более точно условия идентификации определяются, если накладывать ограничения на коэффициенты матриц параметров структурной модели. Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.
Целесообразность проверки условия идентификации модели через определитель матрицы коэффициентов, отсутствующих в данном уравнении, но присутствующих в других, объясняется тем, что возможна ситуация, когда для каждого уравнения системы выполнено счетное правило, а определитель матрицы названных коэффициентов равен нулю. В этом случае соблюдается лишь необходимое, но недостаточное условие идентификации.
В эконометрических моделях часто наряду с уравнениями, параметры которых должны быть статистически оценены, используются балансовые тождества переменных, коэффициенты при которых равны . В этом случае, хотя само тождество и не требует проверки на идентификацию, ибо коэффициенты при переменных в тождестве известны, в проверке на идентификацию собственно структурных уравнений системы тождества участвуют.
Рассмотрим пример. Изучается модель вида
где – расходы на потребление в период t, – совокупный доход в период t, – инвестиции в период t, – процентная ставка в период t, – денежная масса в период t, – государственные расходы в период t, – расходы на потребление в период , инвестиции в период . Первое уравнение – функция потребления, второе уравнение – функция инвестиций, третье уравнение – функция денежного рынка, четвертое уравнение – тождество дохода.
Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.
Модель включает четыре эндогенные переменные и четыре предопределенные переменные (две экзогенные переменные – и и две лаговые переменные – и ).
Проверим необходимое условие идентификации для каждого из уравнений модели.
Первое уравнение: . Это уравнение содержит две эндогенные переменные и и одну предопределенную переменную . Таким образом, , а , т.е. выполняется условие . Уравнение сверхидентифицируемо.
Второе уравнение: . Оно включает две эндогенные переменные и и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.
Третье уравнение: . Оно включает две эндогенные переменные и и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.
Четвертое уравнение: . Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.
Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.
I уравнение | –1 | |||||||
II уравнение | –1 | |||||||
III уравнение | –1 | |||||||
Тождество | –1 |
В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.
Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
II уравнение | –1 | ||||
III уравнение | –1 | ||||
Тождество |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
I уравнение | –1 | ||||
III уравнение | |||||
Тождество | –1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
I уравнение | –1 | ||||
II уравнение | –1 | ||||
Тождество |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом: