Физико-химические свойства аминокислот

Лекция 1

БЕЛКИ КАК УНИКАЛЬНЫЙ КЛАСС БИОПОЛИМЕРОВ

Белки – это высокомолекулярные азотсодержащие органические соединения, построенные из остатков α-аминокислот (АК).

Белки также называют протеинами (греч. protos – первый, важнейший). Белкам принадлежит решающая роль во всех процессах жизнедеятельности, они не встречаются в неживой природе.

Живая природа обладает рядом свойств, отличающих ее от неживой природы: это

1) способность живых организмов к воспроизводству себе подобных;

2) сократимость, движение;

3) высокий уровень структурной организации;

4) способность к эффективному преобразованию и использованию энергии;

5) обмен с окружающей средой и саморегуляция химических превращений.

Все эти свойства живой природы в большей мере обусловлены наличием в ней белков. Таким образом, белки составляют основу и структуры, и функций живых организмов.

Физико-химические свойства белков

1. Высокая вязкость белковых растворов.

2. Водные растворы белков имеют ясно выраженный коллоидный характер. Стабилизация коллоидных растворов белков обеспечивается зарядом частиц коллоидного раствора.

3. Способность белковых растворов к набуханию в больших пределах.

4. Растворы белков оптически активны, подвижны в электрическом поле, поглощают УФ-лучи при 280 нм.

5. Благодаря наличию свободных СООН– и NH2– групп проявляют амфотерные свойства. Кроме того, белки имеют высокую Mr, обладают изоэлектрической и изоионной точкой, денатурируют и ренатурируют и т.д.

Элементный состав белков

В белках содержится до 55% – С; 20-25% – О; 16% – N, а также S, P, Mgи др. Доля азота в отличие от других элементов примерно одинакова и составляет 16% и содержание белка в материале часто определяют по количеству азота (сжигание по Къельдалю). Исключение составляет белки-протамины, которые содержат ~30% N.

Mr – относительная молекулярная масса белков. Она очень велика: от 6000Да до нескольких миллионов Да.

Например, Mr инсулина = 5733 Да, а вируса табачной мозаики – 40 млн.Да

Мономеры или структурные звенья белков.

Их можно определить путем кислотного гидролиза белков. Мономерами белков являются α-АК L-ряда. Соединение АК в полипептидную цепь (ППЦ) происходит посредством ковалентных пептидных связей –CO–NH–.

Сложная структурная организация.

Некоторые природные, а также искусственно полученные полипептиды могут иметь большую Mr, но отнести их к белкам нельзя. Отличает их от белков уникальный признак, присущий только белкам – денатурация. При действии определенных веществ, так называемых детергентов, происходит потеря белком физико-химических свойств, а главное – биологической активности, при этом пептидные связи не разрываются. Таким образом, белки обладают сложной пространственной организацией.

Таковы характерные признаки белков.

Форма белковых молекул.

В природе белки встречаются как в виде нитей – фибрилл, так и в виде шариков – глобул. Иногда глобулярные и фибриллярные формы встречаются в виде комплексов (в мышечной ткани комплекс актина с миозином; в плазме крови содержится фибрилл белка – фибриноген, а также глобулы белка – альбумины и глобулины).

Функции белков.

1. Каталитическая – более 99% ферментов или биологических катализаторов являются белками; например каталаза, аспартат-аминотрансфераза. К 90-м годам 20 в. идентифицировано более 2000 ферментов белковой природы.

2. Питательная (или резервная) – казеин – белок молока, овальбумины – белки яйца.

3. Транспортная – дыхательная функция крови, в частности, перенос О2 осуществляется гемоглобином (Нв) - белком эритроцитов.

4. Защитная – специфические защитные белки-антитела нейтрализуют действие чужеродных белков-антигенов.

5. Сократительная – специфические белки мышечной ткани актин и миозин обеспечивают мышечные сокращения и расслабления, т.е. движение.

6. Структурная – такую функцию выполняют белки – коллаген соединительной ткани, кератин – в волосах, ногтях, коже.

7. Гормональная – регуляция обмена веществ осуществляется за счет гормонов – белков или полипептидов гипофиза, поджелудочной железы.

 

Физико-химические свойства аминокислот

α-АК являются строительными блоками, из которых образуются белковые полипептидные цепи (ППЦ) и, собственно, сами белки. Аминокислоты – это производные карбоновых кислот, в которых один из водородов углеродной цепи замещен на R.

Путем гидролиза из животных белков выделяют 19-25 α-АК, но обычно их получают 20. Общая формула аминокислот:

Аминокислоты – это бесцветные кристаллические вещества, плавящиеся при высоких температурах (>250°С). Легко растворимы в воде и нерастворимы в органических растворителях. Имея в своем составе NH2–группу основного характера и COOH– с кислыми свойствами, АК обладают амфотерностью. В водных растворах α-АК в основном существуют в виде биполярных ионов или цвиттер-ионов с диссоциированной COO–группой и протонированной NH3+–группой.

Цвиттер-ион

В зависимости от рН–среды АК могут быть в виде анионов, катионов, нейтральных биполярных ионов или в виде смеси их форм.

В сильнокислой среде АК присутствуют в виде катионов (q +)

в сильнощелочной среде – в виде анионов (–q)

Величина рН, при которой в водном растворе преобладает цвиттер-ион, т.е. равновесная концентрация «+» и «–» q аминокислот, а также белков, называется изоэлектрической точкой(pI). При достижении такой рН белок становится неподвижным в электрическом поле и выпадает в осадок, что используется в электрофоретических методах анализа белков и аминокислот.

Стереохимия аминокислот.

Важным свойством АК является их оптическая активность в водных растворах. Это свойство АК обусловлено наличием в их структуре хирального атома С. Хиральным атомом или хиральным центром называется атом, у которого все связи замещены различными радикалами (R):

Оптически неактивной является только АК глицин, которая не имеет хирального центра.

Существуют два вида изомеров – структурные и стереоизомеры.

Структурные изомерыэто вещества с одинаковой Mr, но различной последовательностью связывания атомов в молекуле.

Стереоизомерыэто изомеры с одинаковой последовательностью соединения атомов, но с различным их расположением в пространстве.

Если 2 стереоизомера относятся друг к другу как предмет и его зеркальное отражение, их называют энантиомерами.

Энантиомеры всегда проявляют одинаковые химические и физические свойства за исключением одного – направления вращения плоскости поляризованного луча. Энантиомер, вращающий плоскость поляризации по часовой стрелке, называется правовращающим+»), а против часовой стрелки – левовращающим»). Природные аминокислоты являются как «+», так и «–».

Смесь равного количества молекул правого и левого энантиомеров называется рацемической смесью.

Рацематы не обладают оптической активностью. По пространственному расположению атомов и радикалов вокруг хирального центра различают аминокислоты Д– и L–ряда. Для определения принадлежности АК к Д– или L–ряду сравнивают конфигурацию ее хирального центра с энантиомером глицеральдегида (ГА).

По аналогии, в аминокислотах если NH2–группа расположена справа от оси СООН-R, то это Д–АК, а если слева – L–АК.

Все аминокислоты природных белков являются α–АК.

Современная рациональная классификация аминокислот

в соответствии с ней все аминокислоты делятся на 4 группы.

I – Неполярные гидрофобные аминокислоты – их 8.

Аланин   Валин   Лейцин     Изолейцин     триптофан
Пролин   Фенилаланин     Метионин  

II –Полярные гидрофильные незаряженные аминокислоты – их 7.

Глицин   Серин   Треонин   Цистеин
  Тирозин   Аспарагин   Глутамин

III – Отрицательно заряженные кислые аминокислоты

Аспарагиновая кислота
Глутаминовая кислота

IV Положительно заряженные основные аминокислоты

Лизин     Аргинин
  Гистидин  

Образование пептидных связей.

a–СООН группа одной аминокислоты может реагировать с a–NH2 группой другой аминокислоты с образованием пептидных связей.

Пептидные цепи белковэто линейные полимеры a–АК, соединенных пептидной связью.

Мономеры аминокислот, входящих в состав полипептидов, называются аминокислотными остатками, цепь повторяющихся групп –NH–CH–CO– называется пептидным остовом. Аминокислотный остаток, имеющий свободную NH2–группу называется N–концевым, а имеющий свободным α–карбоксигруппу – С–концевым.

Пептиды пишутся и читаются с N–конца.

Пептидная связь, образуемая аминогруппой пролина, отличается от других пептидных связей: у атома азота пептидной группы отсутствует водород, вместо него имеется связь с R.

Пептидные связи очень прочные, для их неферментного гидролиза in vitroтребуются жесткие условия: высокие t° и r, кислая среда, длительное время. In vivo, где нет таких условий, пептидные связи могут разрываться с помощью протеолитических ферментов (E), называемых протеазами или пептидгидролазами.

Полипептидная теория строения белков была предложена в 1902 г. Э.Фишером, в ходе дальнейшего развития биохимии эта теория была экспериментально доказана.

Экспериментальные доказательства полипептидного
строения белков

1. Титруются только концевые COOH– и NH2– группы.

2. При гидролизе белков образуется стехеометрическое количество титруемых COOH– и NH2–групп (происходит распад определенного числа пептидных связей).

3. Под действием протеолитических ферментов (протеаз) белки расщепляются на строго определенные фрагменты с концевыми аминокислотами, соответствующими избирательному действию протеаз.

4. Биуретовую реакцию (раствор сульфата меди CuSO4 в щелочной среде – сине-фиолетовое окрашивание) дают и биурет (NH2–CO–NH–CO–NH2), содержащий пептидную связь и белки.

5. Проведенный рентгеноструктурный анализ (разрешительная способность 0,15-0,2 нм) показывает на рентгенограмме пептидную связь.

6. Самое убедительное доказательство – это синтез химическими методами белков с уже расшифрованной структурой. Синтезированные белки обладают физико-химическими свойствами и биологической активностью, аналогичными природным белкам .

 

 

ЛЕКЦИЯ 2

Классификация белков

В зависимости от химического состава белки делятся на 3 группы:

1) простые (протеины);

2) пептиды;

3) сложные (протеиды).

1. Простые белки построены из аминокислот и при гидролизе распадаются только на аминокислоты.

Протамины и гистоны – содержат до 85% аргинина, поэтому имеют выраженные основные свойства.

Белок сальмин, полученный из молок семги; клупеин – из молок сельди, скорее относятся к пептидам, т.к. имеют Mr не более 5000 Да.

Протамины в основном являются белковой частью нуклеотидов (ДНК). Гистоны сосредоточены главным образом в ядре и представляют белковую часть РНК.

Проламины и глютелины – белки растительного происхождения: зеин получают из кукурузы, глютенин - из пшеницы. Содержат до 25% глу, 10-15% про.

Альбумины и глобулины – содержатся в сыворотке крови, молоке, яичном белке, мышцах и т.д. Это глобулярные белки, отличающиеся различной растворимостью (альбумины растворяются лучше), по Mr (альбумины имеют молекулярную массу, равную 69000 Да, глобулины - 150000Да).

2. Пептиды – это низкомолекулярные азотсодержащие соединения, состоящие из остатков аминокислот и имеющие молекулярную массу менее 5000 Да.

а) с гормональной активностью (АКТГ, окситоцин, вазопрессин и др.);

б) участвующие в процессах пищеварения (секретин, гастрин);

в) содержащиеся в α2-глобулярной фракции сыворотки крови (брадикинин, ангиотензин);

г) нейропептиды (рилизинг-факторы гормонов, например нейрофизины I и II гипоталамуса, способствуют выделению гормонов окситоцина и вазопрессина).

3. Сложные белки или протеиды – состоят из двух частей: белковой и небелковой. Небелковую часть называют простетической группой, а белковую часть, утратившую простетическую группу, называют апобелком.

 

Название сложных белков Простетическая группа
1. Хромопротеиды в т.ч. гемопротеиды, флавопротеиды окрашенный небелковый компонент гемовое железо производное изоаллоксазина ФАД, ФНН
2. Нуклеопротеиды РНК, ДНК
3. Липопротеиды липиды
4. Гликопротеиды олигосахариды, простые сахара
5. Протеогликаны полисахариды
6. Металлопротеиды негемовое железо, другие атомы металлов

Подробно рассмотрим группу гемопротеидов – это Hb и его производное миоглобин (белок мышечной ткани), хлорофиллсодержащие белки и ферменты (цитохромы b, С, С1, каталаза, пероксидаза). Все они в качестве простетических групп содержат Fe (или Mg)–порфирины, а отличаются белковой частью.

Структуру гема впервые раскрыл Ненцкий, а его синтез провел Фишер.

HbA1 – основной представитель Hb крови взрослого человека;

Фетальный HbF – в крови новорожденного содержится до 80%, к концу 1-го года жизни он почти полностью заменяется на HbA1.

HbA состоит из 4 ППЦ: 2α–субъединиц и 2b–субъединиц. Четыре субъединицы или протомера ППЦ гемоглобина связаны друг с другом гидрофобными взаимодействиями. Молекула гемоглобина диссоциирует на два димера - ab и a1b1. Каждый протомер содержит гем, находящийся в гидрофобной «нише», защищающей его от окисления в ферри-форму. Mr ППЦ гемоглобина равна 64458 (64500) Да.

2,5нм
5нм
b
a
b
a1
b1

В основе простетической группы Нbлежит протопорфирин, у которогоимеются: в положении 1,3,5,8-СН3– метильный R; в положении 2,4 СН2=СН– винильнный R; в положении 6,7 СООН–СН2–СН2 – остатки пропионовой кислоты. Железо, входящее в состав гемоглобина, имеет 2 ковалентные и 4 координационные связи; четыре связи образуют связи с атомами азота, пятая координационная связь присоединяет кислород к гему, шестая – связывает гем и ППЦ.