Взаимное расположение прямой и плоскости.
Лекция 7 Плоскость и прямая в пространстве.
Уравнения плоскости в пространстве.
1. Общее уравнение плоскости.Пусть плоскость задана тремя точками
,
и
. Тогда ее уравнение имеет вид:
. (7.1)
Разложив определитель (7.1) по первой строке, получим уравнение:
, (7.2)
где
,
,
.
Раскрыв скобки в уравнении (7.2) и обозначив
, получим общее уравнение плоскости:
. (7.3)
Другие формы уравнения плоскости.
а) Уравнение плоскости, проходящей через точку
и перпендикулярно к вектору
, имеет вид:
. (7.4)
Вектор
называется нормальным вектором плоскости.
б) Уравнение плоскости в отрезках на осях:
, (7.5)
где
– длины отрезков, отсекаемых на координатных осях, взятые с соответствующими знаками.
в) Нормальное уравнение плоскости:
, (7.6)
где
– направляющие косинусы перпендикуляра, проведенного из начала координат к данной плоскости, а
– его длина.
Для приведения общего уравнения плоскости (7.3) к нормальному виду (7.6), следует умножить (7.3) на нормирующий множитель
, где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.
Угол между плоскостями.
Условия перпендикулярности и параллельности плоскостей.
Расстояние от точки до прямой.
Угол
между плоскостями
и
определяется по формуле:
. (7.7)
Условием параллельности плоскостей является:
||
,
или в координатной форме
. (7.8)
Условием перпендикулярности двух плоскостей будет
, т.е.
или в координатной форме:
. (7.9)
Расстояние d от данной точки
до плоскости, заданной уравнением
, находится по формуле:
. (7.10)
Прямая в пространстве.
Прямую в пространстве можно представить как пересечение двух плоскостей, поэтому аналитически ее можно задать системой двух линейных уравнений вида:
(7.11)
Система (7.11) определяет прямую только в том случае, когда коэффициенты
не пропорциональны коэффициентам
и называется общими уравнениями прямой.
Канонические уравнения прямой
(7.12)
определяют прямую, проходящую через точку
параллельно вектору
, который называется направляющим вектором прямой.
Параметрические уравнения прямойимеют вид:
. (7.13)
Угол между прямыми.
Взаимное расположение прямых в пространстве.
Угол между прямыми
и
, заданными каноническими уравнениями
и
, (7.14)
находится по формуле:
. (7.15)
Условие параллельности двух прямых
и
записывают в виде:
||
или
. (7.16)
Условие перпендикулярности двух прямых
и
записывают в виде:
, т.е.
,
. (7.17)
Прямые называются компланарными, если они лежат в одной плоскости. Необходимое и достаточное условие компланарности двух прямых, заданных каноническими уравнениями, записывают в виде:
. (7.18)
Если условие (7.18) не выполняется, то прямые скрещиваются.
Взаимное расположение прямой и плоскости.
Возможны следующие случаи расположения прямой и плоскости:
1) Прямая параллельна плоскости.
Условие параллельности прямой
и плоскости
(рис. 7.1) означает, что
, т.е.
или
. При этом
.

Рис. 7.1
2) Прямая лежит в плоскости.
Условие того, что прямая l лежит в плоскости P означает, что точка
и
(рис. 7.2), откуда имеем:

Рис. 7.2
3) Прямая пересекает плоскость, если
.Для определения точки пересеченияпрямой
с плоскостью
надо совместно решить их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой (7.13). В этом случае из уравнения
находим значение параметра t, соответствующее точке пересечения. Подставляя значение t в параметрические уравнения прямой
, получаем координаты точки
пересечения прямой и плоскости.
Частным случаем пересечения прямой и плоскости является их перпендикулярность.
Условие перпендикулярности прямой l и плоскости P (рис.7.3) означает, что
||
, т.е.
или

Рис. 7.3
Угол между прямой
и плоскостью
находится по формуле:
, (7.19)
где
;
(рис. 7.4)

Рис.7.4