Классы точности средств измерений
Класс точности — это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования, изложенных в предыдущих главах.
Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измерений, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.
Для остальных средств измерений обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности.
Пределы допускаемой абсолютной основной погрешности могут задаваться либо в виде одночленной формулы
Δ = ±a (90)
либо в виде двухчленной формулы
Δ = ±(a + bx) (91)
где Δ и x выражаются одновременно либо в единицах измеряемой величины, либо в делениях шкалы измерительного прибора.
Более предпочтительным является задание пределов допускаемых погрешностей в форме приведенной или относительной погрешности.
Пределы допускаемой приведенной основной погрешности нормируются в виде одночленной формулы
, (92)
где число p = 1·10n, 1.5·10n, 2·10n, 2.5·10n, 4·10n, 5·10n, 6·10n (n = 1, 0, -1, -2…).
Пределы допускаемой относительной основной погрешности могут нормироваться либо одночленной формулой
, (93)
либо двухчленной формулой
, (94)
где Xk — конечное значение диапазона измерений или диапазона значений воспроизводимой многозначной мерой величины, а постоянные числа q, c и d выбираются из того же ряда, что и число p.
В обоснованных случаях пределы допускаемой абсолютной или относительной погрешности можно нормировать по более сложным формулам или даже в форме графиков или таблиц.
Средствам измерений, пределы допускаемой основной погрешности которых задаются относительной погрешностью по одночленной формуле (93), присваивают классы точности, выбираемые из ряда чисел р и равные соответствующим пределам в процентах. Так для средства измерений с δ = 0.002 класс точности обозначается .
Если пределы допускаемой основной относительной погрешности выражаются двухчленной формулой (94), то класс точности обозначается как c/d, где числа с и d выбираются из того же ряда, что и p, но записываются в процентах. Так, измерительный прибор класса точности 0.02/0.01 характеризуется пределами допускаемой основной относительной погрешности
.
Классы точности средств измерений, для которых пределы допускаемой основной приведенной погрешности нормируются по формуле (92), обозначаются одной цифрой, выбираемой из ряда для чисел p и выраженной в процентах. Если, например, γ=±0.005=±0.5%, то класс точности обозначается как 0.5 (без кружка).
Классы точности обозначаются римскими цифрами или буквами латинского алфавита для средств измерений, пределы допускаемой погрешности которых задаются в форме графиков, таблиц или сложных функций входной, измеряемой или воспроизводимой величины. К буквам при этом допускается присоединять индексы в виде арабской цифры. Чем меньше пределы допускаемой погрешности, тем ближе к началу алфавита должна быть буква и тем меньше цифра. Недостатком такого обозначения класса точности является его чисто условный характер.
В заключение данного раздела следует отметить, что никакое нормирование погрешностей средств измерений само по себе не может обеспечить единства измерений. Для достижения единства измерений необходима регламентация самих методик проведения измерений.