Строение атома углерода в алканах, алкенах, алкинах и в ароматических углеводородах

Пространственное строение молекул - это взаимное расположение атомов и атомных групп в пространстве.

sp3-гибридизация.При смешении четырех внешних АО возбужденного атома углерода (см. рис. 2.1, б) - одной 2s- и трех 2p-орбиталей - возникают четыре равноценные sp3-гибридные орбитали. Они имеют форму объемной «восьмерки», одна из лопастей которой значительно больше другой.

Каждая гибридная орбиталь заполняется одним электроном. Атом углерода в состоянии sp3-гибридизации имеет электронную конфигурацию 1s22(sp3)4 (см. рис. 2.1, в). Такое состояние гибридизации характерно для атомов углерода в насыщенных углеводородах (алканах) и соответственно в алкильных радикалах.

Вследствие взаимного отталкивания sp3-гибридные АО направлены в пространстве к вершинам тетраэдра, и углы между ними равны 109,5. Пространственное строение изображается с помощью стереохимических формул. В этих формулах sp3-гибридизованный атом углерода и две его связи располагают в плоскости чертежа и графически обозначают обычной чертой.

sp2-Гибридизация.При смешении одной 2s- и двух 2р-АО возбужденного атома углерода образуются три равноценные sp2-гибридные орбитали и остается негибридизованной 2р-АО. Атом углерода в состоянии sp2-гибридизации имеет электронную конфигурацию 1s22(sp2)32p1 (см. рис. 2.1, г). Такое состояние гибридизации атома углерода характерно для ненасыщенных углеводородов (алкенов), а также для некоторых функциональных групп, например карбонильной и карбоксильной.

 

sp2-Гибридные орбитали располагаются в одной плоскости под углом 120, а негибридизованная АО находится в перпендикулярной плоскости (см. рис. 2.2, б). Атом углерода в состоянииsp2-гибридизации имеет тригональную конфигурацию. Атомы углерода, связанные двойной связью, находятся в плоскости чертежа, а их одинарные связи, направленные к наблюдателю и от него, обозначают, как описано выше (см. рис. 2.3, б).

sp-Гибридизация.При смешении одной 2s- и одной 2р-орбиталей возбужденного атома углерода образуются две равноценные sp-гибридные АО, а две p-АО остаются негибридизованными. Атом углерода в состоянии sp-гибридизации имеет электронную конфигурацию

1s22(sp2)22p2 (см. рис. 2.1, д). Такое состояние гибридизации атома углерода встречается в соединениях, имеющих тройную связь, например, в алкинах, нитрилах.

sp-Гибридные орбитали располагаются под углом 180, а две негибридизованные АО - во взаимно перпендикулярных плоскостях (см. рис. 2.2, в). Атом углерода в состоянии sp-гибридизации имеет линейную конфигурацию, например в молекуле ацетилена все четыре атома находятся на одной прямой (см. рис. 2.3, в).

В гибридизованном состоянии могут находиться и атомы других элементов-органогенов.

В ароматических соединениях физическими, химическими, а также квантово-механическими исследованиями установлено, что в молекуле бензола нет обычных двойных и одинарных углерод–углеродных связей. Все эти связи в нем равноценны, эквивалентны, т.е. являются как бы промежуточными "полуторными " связями, характерными только для бензольного ароматического ядра. Оказалось, кроме того, что в молекуле бензола все атомы углерода и водорода лежат в одной плоскости, причем атомы углерода находятся в вершинах правильного шестиугольника с одинаковой длиной связи между ними, равной 0,139 нм, и все валентные углы равны 120°. Такое расположение углеродного скелета связано с тем, что все атомы углерода в бензольном кольце имеют одинаковую электронную плотность и находятся в состоянии sp2 - гибридизации. Это означает, что у каждого атома углерода одна s- и две p- орбитали гибридизованы, а одна p- орбиталь негибридная. Три гибридных орбитали перекрываются: две из них с такими же орбиталями двух смежных углеродных атомов, а третья – с s- орбиталью атома водорода. Подобные перекрывания соответствующих орбиталей наблюдаются у всех атомов углерода бензольного кольца, в результате чего образуются двенадцать s- связей, расположенных в одной плоскости.

Четвертая негибридная гантелеобразная p- орбиталь атомов углерода расположена перпендикулярно плоскости направления s- связей. Она состоит из двух одинаковых долей, одна из которых лежит выше, а другая - ниже упомянутой плоскости. Каждая p- орбиталь занята одним электроном. р- Орбиталь одного атома углерода перекрывается с p- орбиталью соседнего атома углерода, что приводит, как и в случае этилена, к спариванию электронов и образованию дополнительной p- связи. Однако в случае бензола перекрывание не ограничивается только двумя орбиталями, как в этилене: р- орбиталь каждого атома углерода одинаково перекрывается с p- орбиталями двух смежных углеродных атомов. В результате образуются два непрерывных электронных облака в виде торов, одно из которых лежит выше, а другое – ниже плоскости атомов (тор – это пространственная фигура, имеющая форму бублика или спасательного круга). Иными словами, шесть р- электронов, взаимодействуя между собой, образуют единое p- электронное облако, которое изображается кружочком внутри шестичленного цикла

2. Химические связи атома углерода (σ- и p- связи, донорно- акцепторные связи, водородные связи).

Химические связи в органических соединениях представлены в основном ковалентными связями.

Ковалентной называют химическую связь, образованную в результате обобществления электронов связываемых атомов.

Эти обобществленные электроны занимают молекулярные орбитали (МО). Как правило, МО является многоцентровой орбиталью и заполняющие ее электроны делокализованы (рассредоточены). Таким образом, МО, как и АО, может быть вакантной, заполненной одним электроном или двумя электронами с противоположными спинами*.

σ- и π-Связи

Существуют два типа ковалентной связи: σ (сигма)- и π (пи)-связи.

σ-Связью называют ковалентную связь, образованную при перекрывании АО по прямой (оси), соединяющей ядра двух связываемых атомов с максимумом перекрывания на этой прямой.

σ-Связь возникает при перекрывании любых АО, в том числе и гибридных. Показано образование σ-связи между атомами углерода в результате осевого перекрывания их гибридных sp3-АО и σ-связей C-H путем перекрывания гибридной sp3-АО углерода и s-АО водорода.

Образование σ-связей в этане путем осевого перекрывания АО (малые доли гибридных орбиталей опущены, цветом показаны sp3-АО углерода, черным - s-АО водорода)

Кроме осевого возможен еще один вид перекрывания - боковое перекрывание p-АО, приводящее к образованию π-связи (рис. 2.5).

π-Связью называют связь, образованную при боковом перекрывании негибридизованных p-АО с максимумом перекрывания по обе стороны от прямой, соединяющей ядра атомов.

Встречающиеся в органических соединениях кратные связи являются сочетанием σ- и π-связей: двойная - одной σ- и одной π-, тройная - одной σ- и двух π-связей.

Перекрывание двух одноэлектронных АО - не единственный путь образования ковалентной связи. Ковалентная связь может образовываться при взаимодействии двухэлектронной орбитали одного атома (донора) с вакантной орбиталью другого атома (акцептора). Донорами служат соединения, содержащие либо орбитали с неподеленной парой электронов, либо π-МО. Носителями неподеленных пар электронов (n-электронов, от англ. non-bonding) являются атомы азота, кислорода, галогенов.

Неподеленные пары электронов играют важную роль в проявлении химических свойств соединений. В частности, они ответственны за способность соединений вступать в донорно-акцепторное взаимо- действие.

Ковалентая связь, образующаяся за счет пары электронов одного из партнеров по связи, называется донорно-акцепторной.

Образовавшаяся донорно-акцепторная связь отличается только способом образования; по свойствам она одинакова с остальными ковалентными связями. Атом-донор при этом приобретает положительный заряд.

Донорно-акцепторные связи характерны для комплексных соединений.

Атом водорода, связанный с сильно электроотрицательным элементом (азотом, кислородом, фтором и др.), способен взаимодействовать с неподеленной парой электронов другого достаточно электроотрицательного атома этой же или другой молекулы. В результате возникает водородная связь, являющаяся разновидностью донорно-акцепторной связи. Графически водородную связь обычно обозначают тремя точками.

Водородные связи влияют на физические (температуры кипения и плавления, вязкость, спектральные характеристики) и химические (кислотно-основные) свойства соединений. Так, температура кипения этанола C2H5OH (78,3 С) значительно выше, чем имеющего одинаковую с ним молекулярную массу диметилового эфира CH3OCH3 (-24 C), не ассоциированного за счет водородных связей.

Водородные связи могут быть и внутримолекулярными. Такая связь в анионе салициловой кислоты приводит к повышению ее кислотности.

Водородные связи играют важную роль в формировании пространственной структуры высокомолекулярных соединений - белков, полисахаридов, нуклеиновых кислот.