Определить оптимальное количество работников.
Решение:
Находим MRPL = Р*МPL = 10*(145 - 2*0,75L) =1450 - 15L = W = 1000; L = 30
Задача2.
В фирме “Надувательство”, по надуванию воздушных шариков работают 3 человека, причем каждый надувает в среднем 198 шариков в день. После того как фирма наняла еще одного работника, общее количество надуваемых шариков возросло на 66. Что произошло со средней производительностью труда?
Решение:
Поскольку предельный продукт труда (66 дополнительных шариков) меньше среднего продукта труда (198 шариков), то средняя производительность труда понижается.
Задача 3.В некоторой малой фирме работают двое рабочих, получающих в месяц по 4 тыс. руб. и президент, получающий 10 тыс.руб. в месяц. Как изменилась средняя зарплата на фирме после того, как наняли бухгалтера, работающего за 6 тыс.руб. в месяц?
Решение:
Средняя зарплата в фирме ранее была равна (2.4+10)/3 = 6 тыс.руб.
После найма бухгалтера средняя зарплата стала (2*4+6+10)/4 = 6 тыс.руб.
Таким образом, средняя зарплата не изменилась.
Задача4. Фирма “Перпетум мебели” уволила 30% работников, а оставшимся подняла зарплату на 30%. При этом объем производства мебели вырос на 40%.
a) Как изменилась средняя производительность труда?
b) Что произошло с затратами фирмы на оплату труда? Зарплату считать одинаковой для всех работников.
Решение:
a) Производство выросло на 40%, то есть Q2 = 1,4Q1 .
Число работников сократилось на 30%, то есть L2 =0,7L1 Производительность труда стала равной
Q2/L2 =(1,4Q1/ 0,7L1) = 2 Q1/ L1, то есть выросла в 2 раза.
b) Зарплата каждого работника увеличилась на 30%, то естьW2 = 1,3 W1.
Затраты фирмы на оплату труда стали равными L2 W2 =0,7L 1*1,3W 1 =0,91L1 W1 , то есть сократились на 9%
Ответ: производительность труда выросла в 2 раза, а затраты фирмы на оплату труда сократились на 9%
Рынок капитала
Формулы, применяемые при решении задач:
Ставка процента –i = I/K , где i - ставка ссудного процента, I – годовой доход от
кредита, K – первоначальная сумма кредита.
2. Простые ставки ссудных процентов: S = P (1+n i), где Р - первоначальная сумма кредита,
i - ставка ссудного процента, n – период начисления.
3. Дисконтирование – по наращенной сумме S, периоду начисления n и простой процентной
ставке i нужно определить первоначальную сумму P, т.е. P = S : (1+n i).
4. Сложные ставки ссудных процентов: S = P (1+ i) n .
5 Дисконтирование – по наращенной сумме S, периоду начисления n и сложной
процентной ставке i нужно определить первоначальную сумму P, т.е. P = S : (1+ i)n .
6. Методы оценки инвестиционных решений :
А) метод чистой приведенной стоимости :
Б) метод нормы внутренней отдачи: норма дисконтирования, при которой настоящая стоимость инвестиций равна 0.
Задача1.
Первоначальная сумма Р = 5000руб. Помещена в банк на n=2 года под i = 15% годовых
(простые проценты). Найти наращенную сумму.
Решение:наращенная сумма после двух лет S = P (1+n i) = 5000 (1 + 2*0.15) = 6500
Задача2.
Первоначальная сумма Р = 3000 руб., наращенная сумма S = 4500руб., i = 20% годовых (простые проценты). Найти период начисления.
Решение: Из формулы S = P (1+n* i) находим n = (S – P) : (i *P) = (4500 – 3000) : 0,2*3000 = 2,5 года.
Задача 3.
Первоначальная сумма Р = 2000 руб., наращенная сумма S = 2200руб.,период начисления n = 0,5 года. Найти простую процентную ставку.
Решение: Из формулы S = P (1+n* i) находим i =(S – P) : (n* P) = 0,2 (20%).