Первая глобальная научная революция
Первая глобальная научная революция происходила в XVI-XVIIвв. и оставила глубокий след в культурной истории человечества. Если для натурфилософии античности и для «преднауки» средневековья было характерно простое, чисто количественное приращение знаний (а иногда и вымыслов), то с XVI века характер научного прогресса меняется. Происходит радикальное изменение миропонимания. Это явилось следствием появления гелиоцентрического учения в космологии и последующего создания классической механики, ставшей на длительный исторический период основой своеобразного – механистического – миропонимания.
Первая научная революция считается началом формирования современного естествознания, базирующегося на экспериментальной методологии. Возникает так называемая классическая наука Нового времени, период существования которой заканчивается лишь в конце XIX века.
Радикальное изменение миропонимания было связано с появлением гелиоцентрического учения великого польского астронома Николая Коперника (1473-1543). В своем труде «Об обращениях небесных сфер» Коперник утверждал, что Земля не является центром мироздания и что «Солнце, как бы восседая на Царском престоле, управляет вращающимся около него семейством светил».[13] Возникло принципиально новое миропонимание, которое исходило из того, что Земля – одна из планет, движущихся вокруг Солнца по круговым орбитам. Совершая обращение вокруг Солнца, Земля одновременно вращается и вокруг собственной оси, чем и объясняется смена дня и ночи, видимое нами движение звездного неба.
Коперник показал ограниченность чувственного познания, неспособного отличать то, что нам представляется, от того, что в действительности имеет место (визуально нам кажется, что Солнце «ходит» вокруг Земли). Таким образом, он продемонстрировал слабость принципа объяснения окружающего мира на основе непосредственной видимости и доказал необходимость для науки критического разума.
Учение Коперника подрывало опиравшуюся на идеи Аристотеля религиозную картину мира. Последняя исходила из признания центрального положения Земли, что давало основание объявлять находящегося на ней человека центром и высшей целью мироздания. Кроме того, религиозное учение о природе противопоставляло земную материю, объявляемую тленной, преходящей – небесной, которая считалась вечной и неизменной. Однако в свете идей Коперника трудно было представить, почему, будучи «рядовой» планетой, Земля должна принципиально отличаться от других планет.
Католическая церковь не могла согласиться с этими выводами, затрагивающими основы ее мировоззрения. Защитники учения Коперника были объявлены еретиками и подвергнуты гонениям. Сам Коперник избежал преследования со стороны католической церкви ввиду своей смерти, случившейся в том же году, в котором был опубликован его главный труд «Об обращении небесных сфер». В 1616 году этот труд был занесен в папский «Индекс» запрещенных книг, откуда был вычеркнут лишь в 1835 году.
Гелиоцентрическая система оказалась революционной не только для церкви и аристотелево-птолемеевой традиции. Она революционизировала наш непосредственный жизненный опыт. Коперник дал нам возможность дистанцироваться от опыта, в центре которого мы находимся, и взглянуть на мир с совершенной другой позиции. Учение Коперника потребовало способности видеть мир и нас самих в совершенно новом ракурсе. Человек как субъект должен был посмотреть на окружающий мир и самого себя с совершенно иной, чем раньше, точки зрения.
Это рефлексивное дистанцирование и это «обращение» перспективы называется коперниканской революцией. Раньше люди представляли мир, исходя из субъективной перспективы, в центре которой они находятся. Астрономическая теория, основывающаяся на систематических наблюдениях и математических моделях, поставила под сомнение освященный веками жизненный опыт. В результате человек пережил кризис, который привел к пересмотру его точки зрения на самого себя.
Но это изменение точки зрения человека на самого себя было двойственным. Оно не только вело к своего рода понижению «космического ранга» человека, но и к приобретению им нового положительного самосознания. Росла уверенность в силе разума и нового научного знания.
Крупнейшими представителями математико-экспериментальной науки выступают Галилео Галилей (1564-1642) и Исаак Ньютон (1643-1727). В их работах зародилась новая физика, противоречащая аристотелевской традиции.
В учении Галилео Галилея были заложены основы механистического естествознания, опиравшегося на принципиально новое представление о движении.
До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля (хотя и согласуется с нашим повседневным опытом) является ошибочным. Вместо него Галилей, сформулировав совершенно иной принцип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия.
Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Галилей открыл, что траектория брошенного тела, движущегося под воздействием начального толчка и земного притяжения, является параболой. Галилею принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.
Галилей выработал условия дальнейшего прогресса естествознания, начавшегося в эпоху Нового времени. Он понимал, что слепая вера в авторитет Аристотеля сильно тормозит развитие науки. Истинное знание, считал Галилей, достижимо исключительно на пути изучения природы при помощи наблюдения, опыта (эксперимента) и вооруженного математическим знанием разума, – а не путем изучения и сличения текстов в рукописях античных мыслителей.
Росту научного авторитета Галилея способствовали его астрономические исследования, обосновывавшие и утверждавшие гелиоцентрическую систему Коперника. Используя построенные им телескопы (вначале это был скромный оптический прибор с трехкратным увеличением, а впоследствии был создан телескоп и с 32-кратным увеличением), Галилей сделал целый ряд интересных наблюдений и открытий. Он установил, что Солнце вращается вокруг своей оси, а на его поверхности имеются пятна. У самой большой планеты Солнечной системы – Юпитера – Галилей обнаружил 4 спутника (из 13 известных в настоящее время). Наблюдения за Луной показали, что ее поверхность гористого строения и что этот спутник Земли имеет либрацию, т. е. видимые периодические колебания маятникового характера вокруг центра. Галилей убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд.
Но самое главное в деятельности Галилея как ученого-астронома состояло в отстаивании учения Н.Коперника, которое подвергалось нападкам не только со стороны церковных кругов, но и со стороны некоторых ученых, высказывавших сомнения в правильности этого учения. Галилей сумел показать несостоятельность всех этих сомнений и дать блестящее естественнонаучное доказательство справедливости новой, гелиоцентрической системы.
Как уже отмечалось выше, католической церковью в 1616г. было принято решение о запрещении книги Коперника «Об обращениях небесных сфер», а его учение объявлено еретическим. Галилей в этом решении упомянут не был, но ему все же пришлось предстать перед судом инквизиции. После длительных допросов он был вынужден отречься от учения Коперника и принести публичное покаяние. (В октябре 1992г., Галилей был реабилитирован католической церковью, его осуждение было признано ошибочным, а учение – правильным. Тогдашний глава римско-католической церкви папа Иоанн-Павел II заявил при этом, что церковь не должна выступать против науки, а наоборот, должна поддерживать научный прогресс).
Один из крупнейших математиков и астрономов конца XVI – первой трети XVIIвв. Иоган Кеплер (1571–1630) занимался поисками законов небесной механики и составлением звездных таблиц. На основе обобщения данных астрономических наблюдений он установил три закона движения планет относительно Солнца. В своем первом законе Кеплер отказывается от коперниковского представления о круговом движении планет вокруг Солнца. В этом законе утверждается, что каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Согласно второму закону Кеплера, радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади. Из этого закона следовал вывод, что скорость движения планеты по орбите непостоянна и она тем больше, чем ближе планета к Солнцу. Третий закон Кеплера гласит: квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него.
Конечно, главной заслугой Кеплера было открытие законов движения планет. Но он не объяснил причины их движения. И это неудивительно, ибо не существовало еще понятий силы и взаимодействия. В то время из разделов механики была разработана лишь статика – учение о равновесии (которая разрабатывалась еще в античности, в первую очередь, Архимедом), а в работах Галилея были сделаны лишь первые шаги в разработке динамики. В полной мере динамика – учение о силах и их взаимодействии – была создана позднее Исааком Ньютоном, творчеством которого завершалась первая научная революция.
Научное наследие Исаака Ньютона чрезвычайно разнообразно. В него входит и создание (параллельно с Лейбницем, но независимо от него) дифференциального и интегрального исчисления, и важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных телескопов (он так же, как и Галилей, именно телескопу обязан первым признаниям своих научных заслуг), и большой вклад в развитие оптики (он, в частности, поставил опыты в области дисперсии света и дал объяснение этому явлению). Но самым главным научным достижением Ньютона было продолжение и завершение дела Галилея по созданию классической механики. Благодаря их трудам ХVII век считается началом длительной эпохи торжества механики, господства механистических представлений о мире.
Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки. Первый закон механики Ньютона – это принцип инерции, впервые сформулированный еще Галилеем: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил. Существо второго закона механики Ньютона состоит в констатации того факта, что приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела. Наконец, третий закон механики Ньютона – это закон равенства действия и противодействия. Этот закон гласит, что действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны.
Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними.
Пожалуй, ни одно из всех ранее сделанных научных открытий не оказало такого громадного влияния на дальнейшее развитие естествознания, как открытие закона всемирного тяготения. Огромное впечатление на ученых производил масштаб обобщения, впервые достигнутый естествознанием. Это был поистине универсальный закон природы, которому подчинялось все – малое и большое, земное и небесное. Этот закон явился основой создания небесной механики – науки, изучающей движение тел Солнечной системы.
Существует легенда о знаменитом яблоке, падение которого с дерева будто бы навело Ньютона на мысль о законе всемирного тяготения. Но это не более, чем легенда, имеющая, правда, различные толкования. Стекли – друг Ньютона – утверждал, что якобы сам Ньютон рассказал ему эпизод с яблоком, который и помог ему открыть вышеуказанный закон. Но другой друг Ньютона, Пембертон, считал, что Ньютон специально выдумал историю с яблоком, чтобы отделаться от не в меру любопытных собеседников, типа Стекли.
«Созданная Ньютоном теория тяготения и его вклад в астрономию знаменуют последний этап преобразования аристотелевской картины мира, начатого Коперником. Ибо представление о сферах, управляемых перводвигателем или ангелами по приказу бога, Ньютон успешно заменил представлением о механизме, действующем на основании простого естественного закона...».[14]
В 1687г. вышел в свет главный труд Ньютона «Математические начала натуральной философии», заложивший основы современной теоретической физики. Оценивая это событие, видный физик XX века, бывший президент Академии наук СССР С.И.Вавилов писал: «В истории естествознания не было события более крупного, чем появление «Начал» Ньютона. Причина была в том, что эта книга подводила итоги всему сделанному за предшествующие тысячелетия в учении о простейших формах движения материи».[15]
В своей знаменитой работе Ньютон предложил ученому миру научно-исследовательскую программу, которая вскоре стала ведущей не только в Англии, на родине великого ученого, но и в континентальной Европе. Свою научную программу Ньютон назвал «экспериментальной философией», подчеркивая решающее значение опыта, эксперимента в изучении природы.
Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление развития естествознания на многие десятилетия вперед. Вместе с тем, они предопределили длительное господство механистической картины мира.
В предисловии к своему знаменитому труду «Математические начала натуральной философии» И. Ньютон высказал следующую установку на будущее: «Было бы желательно вывести из начал механики и остальные явления природы…». Многие естествоиспытатели, вслед за Ньютоном, старались объяснить, исходя из начал механики, самые различные природные явления. При этом они неправомерно экстраполировали законы, установленные лишь для механической сферы явлений, на все процессы окружающего мира. В торжестве законов Ньютона, считавшихся всеобщими и универсальными, черпали веру в успех ученые, работавшие в астрономии, физике, химии.
Помимо физики, Ньютон интересовался теологическими вопросами и написал объемные трактаты по теологии. Занимался он и алхимией, пытаясь добиться превращения одних веществ в другие.
В Новое время познание становится особой профессией, а наука превращается в особый социальный институт по производству знания и определяет все стороны жизни человека и общества.