Общие представления об адсорбции. Определение адсорбции. Процессы связывания молекул ксенобиотика с мембранными центрами.

Многие ксенобиотики действуют непосредственно на поверхность клетки, адсорбируясь на клеточной поверхности (мембране). В этой связи адсорбция играет существенную роль в познании механизмов как прямых и опосредованных мембранотропных эффектов, так и вызываемых ими реакций. Адсорбирующая поверхность в клетке может на несколько порядков превышать объем. Белки и крупные молекулы в растворе находятся в коллоидном состоянии и обеспечивают огромную поверхность для адсорбции. С другой стороны, физико-химические характеристики веществ после их адсорбции на мономолекулярной пленке отличаются от их свойств в растворе, что имеет большую биологическую значимость. Адсорбция определяется суммой всех химических связей, образующихся между молекулами или молекулами с поверхностью. Процесс адсорбции обусловлен теми же типами связей (в особенности ван-дер-ваальсовыми, водородными и ионными), что и химические реакции, происходящие во всем объеме вещества. На молекулу, которая адсорбируется из раствора на поверхности, действуют силы, стремящиеся возвратить ее в раствор. Адсорбцию на поверхности подразделяют на неспецифическую и специфическую. Ряд ксенобиотиков вызывает биологическую реакцию, взаимодействуя с определенными местами связывания на мембране. Анализ развития мембранотропных эффектов должен опираться на совокупность модельных представлений, отражающих течение двух основных этапов: связывание молекул эффектора с некими центрами сродства инициирующими процесс, и последующее развитие реакции.При рассмотрении взаимодействия химического агента с биологическими мембранами объектами анализа оказываются процессы доступа эффектора к мембраноактивным центрам, сам акт их взаимодействия и последующее развитие реакции. Обычно для анализа кинетических зависимостей в токсикологии и фармакологии используются соотношения, соответствующие случаю отсутствия диффузионных ограничений, т. е. процессы диффузии полагаются быстрыми в сравнении с развитием реакции.

 

14. Изотермы Ленгмюра. Зависимость доза – эффект.

Если при адсорбции не происходит образования ковалентных связей, то это обратимый процесс, и положение его равновесия устанавливается в соответствии с законом действующих масс. В 1918 г. Лэнгмюр вывел из этого закона уравнение, позволяющее получить количественные характеристики адсорбции. При выводе соотношения были сделаны следующие предположения:

-энергия адсорбции постоянна и не зависит от степени заполнения поверхности;

-адсорбция происходит на локальных центрах, и адсорбированные молекулы между собой не взаимодействуют;

-максимальная возможная адсорбция соответствует полному заполнению монослоя.

Изотерму Лэнгмюра можно представить в линейной форме:адсорбент насыщается при высоких значениях С, т. е. при образовании монослоя. Это так называемая изотерма адсорбции графически представляет собой гиперболу. При адсорбции различных агентов часто наблюдается такое явление, когда биологический эффект от каждого последующего удвоения становится все менее ощутимым, при этом кривая зависимости эффекта от дозы также представляет собой гиперболу. Для явлений, изучаемых общей химией, изотерма Лэнгмюра в большинстве случаев согласуется с экспериментальными данными при условии, что адсорбированный слой является мономолекулярным. Известно несколько типов кривых, характеризующих процесс адсорбции.

1.L-кривые, нормальные изотермы Лэнгмюра, характеризующие адсорбцию молекул, ориентированных на поверхности горизонтально. Чем больше вещества адсорбировано, тем более затруднена дальнейшая адсорбция.

2.S-кривые, соответствующие вертикальной ориентации молекул относительно поверхности. На этапе, который характеризуется начальным участком сигмоидной кривой, чем больше вещества уже адсорбировано, тем легче происходит дальнейшая адсорбция.

3.Н-кривые, характеризующие случаи с высокой степенью сродства; на этих кривых начальные значения концентраций адсорбированного вещества очень велики; такие кривые часто получаются, если вещество адсорбируется в виде мицелл, а также при адсорбции ионов, имеющих высокую степень сродства и способных обмениваться с ионами, обладающими малой степенью сродства.