Основные положения квантовой механики

Двойственность свойств микрообъектов обусловливает невозможность описания их движения и взаимодействия в рамках классической механики. Потребовалась разработка новой механической теории - квантовой механики, основные принципы и законы которой установлены в конце 20-х годов ХХ в.

Принцип неопределенности В. Гейзенберга. Физическая интерпретация «неклассического» поведения микрообъектов была дана немецким ученым В. Гейзенбергом, который в 1927 г., исходя из созданного им математического аппарата квантовой механики, установил связь между предельными точностями определения («неопределенностями») координаты ( ) и соответствующей проекции импульса ( ) микрочастицы:

. (4.7)

Данное соотношение выражает принцип неопределенности Гейзенберга, который определяет фундаментальный предел возможности одновременного измерения пар определенных переменных. В частности, в случае движения электрона в атоме (∆х~10-10м) невозможно достаточно точно определить его ориентацию, что делает неприменимым к данному движению понятия «траектории».

Соотношение неопределенностей связывает также энергию (Е) и время (t):

. (4.8) Данное соотношение объясняет возможность виртуального состояния микрообъектов.

Следует подчеркнуть, что неопределенности обусловлены не техническими возможности определения точных значений данных параметров микрочастиц, а принципиальным «несуществованием» одновременно точных значений для данных пар параметров.

Эти соотношения свидетельствуют об объективно существующих ограничениях в возможности описания микрообъектов на языке классической механики.

Принцип дополнительности Н. Бора. Волновая функция. Н. Бор показал, что корпускулярная и волновая модели микрообъектов никогда не предстают одновременно: получение информации об одних характеристиках микрообъекта неизбежно связано с потерей информации о других, дополнительных к первым. В зависимости от эксперимента микрообъект проявляет либо свою корпускулярную природу, либо волновую, но не обе сразу. Эти две взаимоисключающие стороны природы микрообъекта следует рассматривать как диалектически дополнительные (единство противоположностей).

Описание микрообъектов не может быть дано на основе классической механики, в которой нет места корпускулярно-волновому дуализму. Однозначной характеристикой микрочастицы в квантовой механике является волновая функция - величина, позволяющая определить параметры движения в заданных внешних условиях. Математически волновая функция описывает некоторый процесс, периодический во времени и в пространстве, длина волны которого определяется формулой де Бройля. Однако природа этого процесса не имеет аналогов в макромире, сама волновая функция - ненаблюдаемая величина, не имеющая физического смысла. В квантовой механике с ней связывают так называемые «волны вероятности», так как квадрат амплитуды волной функции является мерой вероятности обнаружения микрочастицы в какой-либо области пространства. Хотя основное уравнение квантовой механики позволяет однозначно определить зависимость волновой функции от координаты и времени в определенных условиях движения микрообъекта, оно фиксирует связь не осуществившихся событий, а потенциальных возможностей этих событий и выражающих их вероятностей. Поэтому однозначная причинно-следственная связь событий, проявляющаяся в классической механике, не свойственна микромиру, здесь эта связь включает и необходимое и случайное. Даже зная начальное состояние и условия движения микрообъекта, невозможно однозначно предсказать его последующее поведение. Описание его состояния с помощью волновой функции отражает изначально присущую микрообъектом вероятностность поведения. Ненаглядность создаваемых квантовой механикой моделей микромира не противоречит объективности даваемых ею знаний, но отражает качественное отличие свойств объектов микро- и макромира.

Особые свойства микрочастиц. Развитие релятивистской квантовой механики, описывающей движение микрообъектов со скоростями, сравнимыми со скоростью света, уже в конце двадцатых годов, привело к новым открытиям. В 1927 г. английский ученый Поль Дирак установил возможность существования у всех микрочастиц двойников – античастиц. Античастицы отличаются от частиц знаком электрического (или другого) заряда. Античастица электрона (е-) – позитрон(е+), имеющая положительный электрический заряд, была открыта в 1932 г. Взаимодействие частицы и античастицы приводит к аннигиляции (исчезновению) обеих и превращению их в кванты электромагнитного излучения:

е - + е + → 2γ (4.9)

Возможна и обратная реакция:

2γ е - + е + (4.10)

Однако она становится реальной только в силовом поле ядра атома. В отсутствии такого поля электрон и позитрон появляются как виртуальные частицы.

В микро-мире могут возникать виртуальные частицы. В соответствии с принципом неопределенности в течение некоторого времени:

(4.11)

возможно существование частиц с полной энергией ΔЕ = 2. Если это время слишком мало (меньше, чем 10-22 с), частицы невозможно экспериментально обнаружить, они виртуальны. Виртуальными являются все переносчики фундаментальных взаимодействий, фигурирующие в модели обменного взаимодействия.

Описание взаимодействия микрообъектов в настоящее время реализуется на основе развивающейся квантовой теории взаимодействий, которая является ядром всей современной физики. Она дает общий подход ко всем известным типам взаимодействий.

Физический вакуум. Одним из важнейших результатов такого подхода является представление о физическом вакууме.

Слово vacuum по латыни означает пустота. По обыденным житейским представлениям вакуум — это пространство, которое абсолютно ничего не содержит: ни молекул, ни атомов, ни элементарных частиц. Однако физики трактуют физический вакуум иначе. Чтобы пояснить что такое физический вакуум, проведем мысленный эксперимент. Допустим, мы имеем сосуд сферической формы с идеально изолирующими и идеально отражающими стенками. Пусть в исходном состоянии в сосуде не обнаруживаются (не регистрируются) ни частицы вещества, ни кванты электромагнитного излучения т.е. фотоны, и нам представляется, что в сосуде пустота, не содержащая в себе абсолютно ничего. Эксперимент начнем с того, что через очень малое прозрачное окошко в стенке сосуда начнем накачивать его электромагнитным излучением. Небольшая часть излучения после многократных отражений выйдет обратно из окошка, большая его часть останется внутри сосуда. Со временем количество фотонов в сосуде будет возрастать. В некоторый момент времени какой-нибудь фотон внутри сосуда столкнется с другим фотоном и появится электрон-позитронная пара (в соответствии с (4.10)). Теперь вакуум перестал быть пустым, теперь он содержит две частицы: электрон и позитрон. Откуда взялись эти частицы? Их не было в электромагнитном излучении. Следовательно, электрон и позитрон всегда находились в вакууме в каком-то нерегистрируемом виртуальном состоянии. Как уже указывалось, частицу можно зафиксировать, если время ее жизни более 10-22с. В «неподогретом» электромагнитным излучением вакууме пытающиеся появиться электрон и позитрон сразу исчезают в течение времени меньшем, чем 10-22 с., то есть умирают, не успев родиться. Обнаружить т.е детектировать их удалось лишь после того, как они получили энергию от фотонов и перешли из мерцающего, виртуального, в реальное состояние. Таким образом, физический вакуум можно представить себе как объект физического мира, в исходном состоянии которого не удается обнаружить приборами каких-либо частиц. Путем воздействия на физический вакуум, например, электромагнитным излучением можно увеличить его энергию (нагреть), и перевести его в возбужденное состояние, при котором из вакуума рождаются реальные частицы: электрон и позитрон. Если, посылая свет в окошко, продолжать увеличивать плотность электромагнитного излучения в сосуде, то фотоны начнут сталкиваться с электронами и позитронами. Вследствие такого воздействия рождаются более массивные положительно и отрицательно заряженные частицы: мюоны или мезоны. Дальнейшее «накачивание» сферического сосуда фотонами вызовет рождение частиц пионов или мезонов, а затем внутри сосуда начнут образовываться пары протон-антипротон и нейтрон-антинейтрон. Таким образом, в результате такого нарастающего энергетического воздействия фотонами на пустоту внутри сосуда можно получить все частицы, необходимые для построения атомных ядер и атомов Возникает вопрос: « А был ли вакуум пуст?» Если мы наблюдаем образование частиц из вакуума при его «разогреве», то они там были, но были в непроявленном, недетектируемом состоянии, следовательно, физический вакуум содержит плотно упакованный набор всех известных нам в природе частиц, находящихся в виртуальном состоянии. По выражению российского физика А.Б. Мигдала (1911 – 1991), физический вакуум можно представить себе как физический объект, который «кишит еще неродившимися» материальными частицами.

Свойства физического вакуума описывает квантовая теория поля, позволяющая понять механизм всех известных нам типов взаимодействий. Квантовая теория поля рассматривает физический вакуум как прародителя известного нам мира и дает его определение: физический вакуум — это низшее энергетическое состояние квантовых полей, характеризующееся отсутствием каких-либо реальных материальных частиц. В этом состоянии обращаются в нуль импульс, электрический заряд и другие характеристики частиц. В то же время физический вакуум не следует понимать как абсолютную пустоту. В нем постоянно происходят флуктуации (случайные всплески) энергии, приводящие к возникновению виртуальных частиц. Время жизни виртуальных частиц очень мало, не более 10-22с, и они не успевают вступить во взаимодействие с реальными частицами. Поэтому их можно считать чем-то вроде «призраков». Однако «призрачный туман» виртуальных частиц участвует в коллективных взаимодействиях с реальными объектами материального мира, например, с ансамблями реальных частиц. Известен целый ряд физических эффектов, обусловленных этим взаимодействием. Например, сдвиг энергетических уровней в спектре водорода, аномалии в величине магнитного момента электрона и др. Согласно современным космологическим теориям, в основе построения которых лежит концепция Большого Взрыва (подробнее об этом ниже), возникновение Вселенной явилось следствием фазового перехода физического квантового вакуума. В силу соотношений неопределенности В. Гейзенберга (3.8), в вакууме непрерывно происходят флуктуации энергии и спонтанные рождения и аннигиляции виртуальных частиц. Таким образом, физический вакуум не пуст, а насыщен всевозможными флуктуациями всевозможных полей и представляет собой физический объект, при коллективном взаимодействии с которым обнаруживают свои свойства все элементарные частицы (микрообъекты) реального мира.

Взаимодействие микрообъектов с вакуумом по современным воззрениям свидетельствует о целостности мира, о несведении его к отдельным элементам. Если согласно классической науке мир рассматривался как совокупность независимых отдельных частей, взаимодействующих по детерминистским законам, то в квантовой теории ни один объект не может быть полностью индивидуализирован. По словам Борна, Вселенная является неделимым целым, отдельные частицы которого имеют смысл абстракций или приближений, справедливых лишь в классическом пределе. Во второй половине XX в. основное внимание уделяется созданию единой квантово-релятивистской теории структуры материи и фундаментальных взаимодействий.

Взаимосвязь классической и квантовой механики. Согласно существующему в науке принципу соответствия, разные, но верные теории, относящиеся к одному кругу явлений, должны быть взаимосвязаны. В наличии такой связи мы убедились на примере релятивисткой и классической механики: вторая имеет более узкие рамки применимости и является частным случаем первой при выполнении условия (2.14). Аналогичная связь имеет место и в случае квантовой механики. Если произведение энергии объекта и времени соответствующего процесса слишком велико по сравнению с постоянной Планка

Е t >>h, (4.13)

волновые свойства объектов не проявляются, и соотношения квантовой механики переходят в формулы классической механики, которая является ее частным случаем. Наиболее общей теорией, имеющей самые большие границы применимости, является релятивистская квантовая механика. Выше названные три теории - ее частные случаи, которые реализуются при следующих условиях: при выполнении (2.14) – квантовая механика, при выполнении (4.11) – релятивистская, при выполнении обоих условий одновременно – классическая.

 

Структура микромира

Структура атома. Идеи античных атомистов были возрождены в научном естествознании в XVIII в. английским ученым Дальтоном (1766 – 1844). К XIX в. стало ясно, что мельчайшая частица химического элемента «атом» (с греческого - «неделимый») обладает внутренней структурой, и, будучи в целом электрически нейтральной, включает компоненты с противоположным знаком электрического заряда. Отрицательно заряженная частица, входящая в состав атома - электрон, открыта в 1897 г. Дж. Дж. Томсоном (1856 – 1940). В начале XX в. английский физик Э. Резерфорд экспериментально исследовал внутреннее строение атома, используя радиоактивные α - частицы. Оказалось, что положительный заряд и основная масса атома сосредоточены в очень малом объеме - ядре (~10-15 м), в то время как размеры атома (~10-10 м) определяются электронной оболочкой. Заряды в микромире принято выражать в единицах элементарного заряда (заряда электрона) - . Заряд электрона в такой системе равен (-1), протона - (+1). Исследования показали, что выраженный в таких единицах заряд ядра, а следовательно, и количество электронов в оболочке атома равны порядковому номеру химического элемента в таблице Менделеева. Периодический закон Менделеева отражает периодичность строения электронных оболочек атома и обусловленных ими химических свойств. При этом оказалось, что существуют атомы (ядра) одного элемента, обладающие разной массой. Они получили название изотопы («топ» – место). Указанное в таблице Менделеева массовое число определено для природной смеси изотопов данного элемента.

Отрицательно заряженные электроны оболочки атома движутся в электромагнитном поле, создаваемом положительно заряженным ядром и другими электронами. Учет волновых свойств электронов позволяет определить их возможные состояния и соответствующие им волновые функции. При этом, как уже отмечалось, для электрона в атоме понятие траектории неприменимо, можно говорить только о вероятности его нахождения на разных расстояниях от ядра. Энергия электрона в атоме квантована, то есть принимает определенный набор разрешенных значений. Состояние с наименьшей энергией называется основным, остальные – возбужденными. Атом может переходить в возбужденное состояние поглощая энергию электромагнитного излучения, если величина кванта соответствует разнице между разрешенными значениями энергии, т.е. если фотон имеет определенное значение частоты. Возвращаясь в основное состояние, атом испускает фотон той же частоты. Для каждого химического элемента существует свой набор (спектр) частот, испускаемых (или поглощаемых) атомами. Это позволяет, исследуя спектральный состав излучения, испускаемого веществом в атомарном состоянии, сделать выводы о его химическом составе. Спектральный анализ широко используется как в технике, так и в научных исследованиях, в частности в астрономии.

Структура атомного ядра. Структура атомных ядер была определена в 30-е годы ХХ в. Частицы, из которых состоит ядро, имеют общее название – нуклоны. Масса нуклона почти в 2000 раз больше массы электрона, и ее приближенное значение принято за атомную единицу массы (а. е. м.). В а. е. м. измеряется масса ядер . Существуют два типа нуклонов – протон и нейтрон. Протон несет положительный электрический заряд, величина которого равна элементарному, и совершенно стабилен. Нейтрон несколько тяжелее протона, электрически нейтрален и в свободном состоянии способен самопроизвольно превращаться в протон с образованием электрона и антинейтрино. Используя общепринятые обозначения частиц: протон – р, нейтрон – n, электрон – е, нейтрино – ν, фотон – γ, и обозначая заряд частицы нижним индексом, а массовое число – верхним, данное превращение можно записать следующим образом:

. (4.12)

(Знак «~» означает, что в данной реакции возникает антинейтрино). Видно, что в этом превращении выполняются законы сохранения заряда и массового числа .

Зная порядковый номер (Z) и массовое число некоторого изотопа , легко определить число протонов и нейтронов в нем. Очевидно, что общее число нуклонов равно А, а количество заряженных протонов – Z (заряд ядра равен порядковому номеру изотопа), следовательно, количество нейтронов равно (A – Z). Таким образом, становится ясным, что изотопы элемента, имеющие разные массы, различаются количеством нейтронов, а количество протонов для всех изотопов данного химического элемента постоянно.

Между нуклонами в ядре осуществляется электромагнитное, сильное и слабое взаимодействия. Электростатическое отталкивание одноименно заряженных протонов компенсируется не зависящим от заряда сильным (ядерным) взаимодействием между всеми нуклонами – и протонами, и нейтронами.

Чтобы разложить ядро на составляющие его нуклоны, надо затратить энергию, называемую энергией связи ядра. При образовании же ядра из нуклонов выделяется энергия, равная энергии связи. Данный процесс сопровождается уменьшением суммарной массы системы на величину, называемую дефектом массы ( m).

, (4.13)

здесь: Z – порядковый номер элемента; А – его массовое число; mp, mn, mядра – масса соответствующих частиц.

По закону взаимосвязи массы и энергии энергия связи ядра (Есв) пропорциональна дефекту массы ( m):

. (4.14)

Энергия связи, приходящаяся на один нуклон, закономерно изменяется в зависимости от массового числа, причем максимальное её значение соответствует ядрам со средними значениями атомной массы. Это делает энергетически выгодными два типа процессов – слияние легких ядер (реакции синтеза) и деление тяжелых ядер (реакции распада). В настоящее время считается, что именно реакции первого типа – слияние ядер водорода (Z = 1) с образованием ядер гелия (Z=2), протекающие в недрах звезд, являются источником их энергии, поддерживающим температуру в десятки миллионов кельвинов. Процессы деления тяжелых ядер, в частности урана и плутония, позволяют получать энергию в атомных реакторах. Исторически сложилось так, что, хотя в обоих случаях речь идет о ядерной энергии, энергию, выделяющуюся при расщеплении атомных ядер принято называть атомной энергией, а при слиянии – термоядерной. Данные процессы являются примером превращения одних изотопов в другие. До XX в. такие процессы считались невозможными, а с открытием радиоактивности их исследование стало одним из важнейших направлений в физике микромира.

Радиоактивностьсамопроизвольное превращение одних изотопов в другие, сопровождающееся испусканием излучения. Это явление открыто французским ученым А. Беккерелем (1852 – 1908) в 1896 г. при изучении люминесценции солей урана. Исследование состава радиоактивного излучения, его природы, различных радиоактивных веществ проводились Пьером Кюри (1859 – 1906)и Марией Кюри-Склодовской (1867 – 1934), а также Резерфордом. Из встречающихся в природе минералов радиоактивны соединения изотопов урана, тория, радия и др. Характеристикой устойчивости изотопа относительно распада является период полураспада – время, за которое распадается половина первоначального количества ядер. Ни физические, ни химические условия не влияют на радиоактивный распад, поэтому данное явление является источником наших знаний о геологической шкале времени. Определяя процентное содержание исходных и образовавшихся ядер, можно достаточно точно определить возраст, например, горных хребтов.

Исследования радиоактивного излучения показали, что существует три вида продуктов распада, обозначаемых греческими буквами α, β и γ.

При α – распаде из атомного ядра вылетает α-частица, состоящая из двух протонов и двух нейтронов, то есть ядро гелия , и возникает новое ядро . Данный вид превращения обусловлен сильным взаимодействием и свойственен тяжелым ядрам (А>80). При β-распаде из ядра вылетает электрон, новое ядро имеет то же массовое число, но порядковый номер на единицу больше исходного . Этот процесс интересен появлением в результате распада ядра частицы, в нем не содержащейся. Теорию β-распада создал итальянский ученый Ферми. Оказалось, что β-распад обусловлен взаимными превращениями протонов и нейтронов, вызванным слабым взаимодействием. Примером такого превращения является рассмотренный ранее распад свободного нейтрона (3.12). Изучение закономерностей β-распада привело к гипотезе о существовании нейтральной частицы с нулевой массой – нейтрино, которая возникает одновременно с электроном. Экспериментально нейтрино было открыто в 1956 г. Для искусственных изотопов β-распад может протекать с возникновением античастицы электрона – позитрона; жесткое коротковолновое электромагнитное излучение, то есть поток фотонов большой энергии (γ- лучи) сопутствует двум выше упомянутым видам распада.

Радиоактивные изотопы широко применяются в современной науке и технике прежде всего потому, что каждый из них – «меченый» атом, местонахождение которого можно определить по его излучению. Кроме того, используется проникающая и ионизирующая способности радиоактивных излучений. Наряду с радиоактивностью, реакциями распада и синтеза к ядерным превращениям относятся и различные ядерные реакции, протекающие при взаимодействии ядра с элементарными частицами и другими ядрами. Таким образом, атомы одного элемента могут превращаться в атомы другого. Эти процессы происходят как самопроизвольно (радиоактивность), так и искусственным путем посредством различных ядерных реакций. Следует отметить, что в данных процессах всегда выполняются как фундаментальные законы сохранения, так и законы сохранения, специфичные для микромира.

Классификация элементарных частиц.Нуклоны (протоны и нейтроны), электроны, нейтрино, фотоны являются элементарными частицами. Их элементарность заключается не в простоте или отсутствии структуры, а в том, что из них «построен» весь материальный мир и их невозможно разбить на более мелкие свободно существующие составляющие. К элементарным относится и множество других частиц –гипероны, мюоны и т.д., которые существуют в свободном состоянии, возникают при ядерных реакциях, доходят до нас в составе космических лучей, но более сложных структур (подобных атомам) не образуют. Элементарные частицы разнообразны по массе, заряду, времени жизни, другим специфическим параметрам, не свойственным макротелам. В настоящее время принята следующая их классификация.

Частицы, участвующие в сильном взаимодействии, образуют класс адронов. В него входят мезоны, обладающие целым спином, т.е. бозоны (например, пионы)и барионы, имеющие полуцелый спин, т.е. фермионы (например, нуклоны). Адроны участвуют в сильном, слабом, гравитационном и электромагнитном взаимодействиях. Согласно описанной выше модели, адроны имеют внутреннюю структуру и состоят из кварков. Все многообразие адронов (более трехсот) формируется комбинациями шести кварков (и шести антикварков), находящихся в различных квантовых состояниях. Мезоны строятся из двух кварков, барионы - из трех. Кварки нельзя выделить как свободные частицы, но именно они считаются мельчайшими структурными составляющими адронов.

Второй класс частиц – лептоны. Лептоны не участвуют в сильном взаимодействии и в современых теориях считаются бесструктурными. К ним относятся также шесть частиц: электрон и электронное нейтрино, мюон и мюонное нейтрино, таон и таонное нейтрино. Соответственно для каждой из этих частиц существует античастица.

Третий класс составляют частицы – переносчики фундаментальных взаимодействий: глюоны, фотоны, промежуточные бозоны, гравитоны (последние экспериментально пока не обнаружены