ЕДИНЫЙ ЗАКОНОМЕРНЫЙ МИРОВОЙ ПРОЦЕСС

Мир — это единая материальная субстанция. Ее важнейшим способом существования является процесс развития. Материальное единство мира выражается поэтому в единстве мирового процесса развития, т е в едином закономерном мировом процессе Субстанци­альное единство мира проявляется в его процессуальном единстве. Идея единого мирового процесса была разработана Энгельсом и Лени­ным и включена в число важнейших, обобщающих идей диалектичес­кого материализма. Согласно Ленину, мир есть “вечный процесс”[66], “мир есть вечно движущаяся и развивающаяся материя”[67], “единый, за­кономерный мировой процесс”[68]. Известные современной науке четыре основные формы материи выступают в качестве ступеней единого бесконечного мирового процесса развития. Поскольку все научное знание, вся духовная и материальная культура общества основываются на познании и практиче­ском использовании этих четырех фундаментальных форм материи, необходимо рассмотреть важнейшие особенности каждой из них, за­кономерности единого мирового процесса развития Представление о едином мировом процессе развития является синтезом философских и конкретно-научных обобщений[69].

Физическая форма материи

 

В отличие от других, физическая форма материи (ФФМ)[70] изве­стна нам, более или менее достоверно, лишь с некоторого относитель­но простого уровня — лептонов и кварков, выше которого следует уровень “сильнодействующих” (участвующих в “сильных взаимодейс­твиях”) элементарных частиц (протонов, нейтронов, мезонов, гиперонов и т. д.), атомов, макротел, космических объектов, включая круп­нейшее известное нам образование — Метагалактику, или “нашу Все­ленную”, “Вселенную в космологическом смысле)*. Разрабатываются гипотезы о более простых, чем кварки, физических элементах или структурах — протокварках, “струнах” и т. д. Наиболее элементарный, по-видимому, уровень ФФМ — сингулярное состояние остается пока предметом гипотез и, в силу этого, современная физика еще не распо­лагает единой фундаментальной теорией ФФМ. В более укрупненном плане ФФМ может рассматриваться как составленная из двух основ­ных форм физической материи — вещества и поля.

Хотя современная физика не знает как наиболее простых, так и наиболее крупных (больше Метагалактики) уровней физической ре­альности, в ней получила серьезные основания идея генетического единства ФФМ. Согласно современным представлениям, известная нам физическая реальность возникла из относительно простого сингу­лярного состояния в результате “Большого взрыва” 10-20 млрд. лет на­зад. Предполагается, что для описания исходного сингулярного состо­яния и, следовательно, создания фундаментальной физической теории необходима новая концепция, представляющая собой синтез идей квантовой механики и теории относительности.

Не зная нижнего и верхнего пределов ФФМ, мы можем, однако, с большой уверенностью заключить о существовании объединяющих физическую реальность двух наиболее фундаментальных свойств — массы и энергии. “Величина массы и энергии в существенной степени определяет устойчивость и изменчивость элементарных частиц, ядер, атомов и атомно-молекулярных систем, характер их движения, вид взаимодействия, пространственно-временной интервал существования данных физических объектов, геометрические свойства пространства, времени, характер и последовательность ступеней эволюции Все­ленной. Разумеется, каждая частная физическая форма материи и дви­жения обладает своими специфическими свойствами, отличающими ее от других форм, однако в целом, в своей тотальности частные физи­ческие формы материи характеризуются единым, общим, интеграль­ным свойством — энергией, в которой угасают эти специфические свойства, исчезают различия между частными физическими формами материи и движения. Наличие этого свойства оказывается необходи­мой основой взаимодействия и взаимопревращения различных физи­ческих объектов, позволяет ввести общую меру физического движе­ния, отражающую единство физической реальности, ее отличие от хи­мической, биологической и социальной форм материи”[71].

Фундаментальные свойства масса и энергия находятся в глубо­кой зависимости, фиксируемой соотношением Эйнштейна Е=тс2, ко­торое М. Борн назвал законом, выражающим важнейшие результаты теории относительности, позволяющим достичь глубокого объедине­ния наших знаний о мире[72].

Таким образом, физическая форма материи — это масс-энергетический мир

В рамках целостной ФФМ можно выделить несколько уровней, изу­чение которых имеет особый частнонаучный и философский интерес.

Вещество и поле. Физика XIX в. рассматривала вещество и по­ле как две резко различающиеся формы физической материи. С этих позиций вещество дискретно, или состоит из корпускул — атомов, мо­лекул и т. д., имеющих определенную конфигурацию, радиус, массу покоя, траекторию движения. Поле (электромагнитное, гравитацион­ное, мезонное и др.) имеет непрерывный, волновой характер, не делит­ся на корпускулы, не имеет массы покоя, траектории движения, дви­жется со скоростью света. Физика XX в. обнаружила глубокое единс­тво вещества и поля. Оно выражается, во-первых, во взаимопревра­щениях вещества и поля (когда частицы и античастицы аннигилируют, превращаются в кванты поля и, наоборот, поле рождает из себя частицы вещества); во-вторых, в том, что вещество и поле обладают родс­твенными свойствами.

Обнаружение единства вещества и поля создало огромные тео­ретические и гносеологические трудности как для физики, так и для философии.

В 1900 г. М Планк впервые ввел представление о том, что свет распространяется не какими угодно порциями, а только определенны­ми — квантами. Понятие кванта обозначало порции энергии, на кото­рые делится энергия светового потока, и свидетельствовало о том, что свет состоит из своего рода “частиц”, которые позднее Эйнштейн на­звал фотонами.

В 1913 г. Я Бор создал первый вариант квантовой теории ато­ма, согласно которой структура атома, распределение его электронных оболочек определяется квантовыми уровнями. В 20-е гг. было устано­влено, что электроны в своем движении через тончайшую металличес­кую пластинку проявляют волновые свойства — дифракции и интер­ференции. В 1925 г. Луи де Броиль высказал замечательную мысль, что элементарные частицы обладают двойственными, противоречивы­ми свойствами — являются одновременно частицами и волнами. Со­временная квантовая теория вещества и поля была создана Я Бором, Э Шредингером и В. Гейзенбергом. Согласно этой теории, вещество и поле состоят из своего рода частиц, проявляющих в различных опытах либо только корпускулярные, либо только волновые свойства. Так, в счетчике Гейгера электрон ведет себя только как дискретная частица. Когда пучок электронов проходит через кристаллическую решетку или отверстие в диафрагме, он проявляет только волновые свойства.

Противоречивые свойства частиц вещества и поля выражаются в двух необычных, с позиций прежней физики, принципах — неопре­деленности и дополнительности. Согласно принципу неопределенно­сти, если определяется местонахождение (координаты) частицы, то становится неопределенным ее импульс (р), если же точно определя­ется импульс частицы, то становятся неопределенными ее координаты (х, у, z). Такого рода “неопределенность”, связанная с противоречивой природой микрообъекта, выражается в соотношении неточностей: произведение неточности в определении импульса частицы и неточно­сти в координате больше или равно постоянной Планка (h). DpxDx>h, DpyDy>h, DpzDz>h. Согласно принципу дополнительности полное опи­сание частицы достигается путем совмещения корпускулярного и вол­нового описания ее.

Микро- и макрообъект: что сложнее?

Обнаружение неожиданных и “странных” свойств микрообъек­тов первоначально вызвало целый взрыв идеалистических спекуля­ций. Противоречивая картина микрообъектов послужила поводом для утверждения со стороны некоторых физиков и философов, что микро­объект есть фикция, совокупность ощущений, наш способ понимания показаний приборов. Выдвигалось также представление об индетерминированности поведения элементарных частиц, о “свободе воли” у электрона и т. д. Материалистически мыслящие физики и философы дали, однако, иное истолкование природы микрообъектов. С позиций диалектического материализма, из которых сознательно или стихийно исходили эти ученые, микрообъект является новой для нас формой объективной реальности, которая отнюдь не обязана быть в точности такой, каков макрообъект. Обнаружение странных с позиций макро­физики свойств микрообъектов — подтверждение бесконечного мно­гообразия объективной реальности.

 

Микрообъект не является, строго рассуждая, ни волной, ни корпускулой, он есть качественно иная реальность, про­тиворечивые свойства которой выражаются в макроскопической фор­ме, посредством макроприбора, в форме волновых и корпускулярных свойств.

Квантовая механика по-новому поставила проблему прибора и объекта, а в связи с этим и проблемы познания, проблему объектив­но-реального существования. Согласно наиболее основательной ин­терпретации квантовая механика описывает микрообъект не в “чистом виде”, а применительно к макроприбору и, следовательно, в известной мере, применительно к человеку как макроскопическому существу. Это давало некоторым философам повод для отрицания познаваемо­сти микрообъекта как такового. Однако, как убедительно возразил В.А. Фок, макроприбор состоит из микрообъектов, в силу чего его природа отнюдь не чужда природе микрообъектов и поэтому он может адекватно передавать природу последних. Это весьма сильный, но, с нашей точки зрения, недостаточный аргумент в пользу признания по­знаваемости микромира. Поскольку макрообъект имеет иное, чем мик­рообъект, качество, необходимы дополнительные аргументы в пользу идеи познаваемости микрообъектов. Эти аргументы заложены в кон­цепции единого закономерного мирового процесса, в диалектике соот­ношения высших и низших форм (ступеней развития) материи. Одна­ко мы пока оставим их в покое: еще не время собирать камни. Ограни­чимся лишь замечанием, что описание одного объекта (микро-) приме­нительно, т. е. в отношении к другому (макро-) отнюдь не ставит под сомнение тот факт, что эти объекты действительно познаются нами. Строго говоря, квантовая механика только особенно ярко выявила то обстоятельство, что любые предметы познаются в отношении к дру­гим. Ньютонова механика также представляет собой описание объектов в отношении к другим. Различие состоит в том, что в ньютоновой механике эти объекты качественно однородны — макроскопичны.

Для материалистической философии трактовка квантовой меха­ники как описания микрообъектов применительно к макромиру не яв­ляется исключительной новостью и потому, что, начиная с Фейербаха, элементарная форма познания - ощущение рассматривалась как ото­бражение объективных качеств вещи применительно к своего рода “прибору” - человеческим органам чувств, или, точнее, применитель­но к субъекту. Однако квантовая механика открыла качественно более сложный способ соотнесения объекта с прибором и познающим субъ­ектом и поэтому придала проблеме объективной реальности большую сложность и остроту.

Существенной стороной квантовой механики и связанного с ней толкования объективной реальности является вероятностная кар­тина мира, в которой понятия случайности и вероятности приобрели более глубокий смысл. Согласно наиболее принятой интерпретации квантовой механики “волны”, в которых обнаруживает себя микро­объект, — это “волны вероятности”. Вероятностная картина мира по-иному поставила проблему необходимого мира, т.е. мира необходимостей и закономерностей, что также привело к усложнению проблемы объективно-реального существования мира.

Глубокий микромир. В последние десятилетия основной инте­рес физики и философии переместился с уровня квантовой теории ве­щества и поля на более глубокие уровни микромира, начиная с эле­ментарных частиц. В 60-е гг. концепция “бутстрапа” (“зашнуровки”) пыталась представить уровень элементарных частиц как последний, замкнутый на себя, наипростейший структурный уровень материи. Утверждалось, что элементарные частицы “состоят” друг из друга (на­пример, протон из нейтрона и позитрона), но не из каких-либо более простых частиц. Одним словом, гипотеза бутстрапа претендовала на открытие своего рода “праматерии”. В этот период среди советских философов, работавших в области философских проблем физики, по­лучает широкое распространение идея предельно простого уровня ма­терии, предлагается якобы революционный пересмотр идеи бесконеч­ной неисчерпаемости и структурности материи, объявляется несосто­ятельной теоретическая и логическая формула: элементарная частица состоит из и т. д.

Однако вскоре физики, исходившие из более глубокой идеи не­исчерпаемости, структурности элементарных частиц, создают концеп­цию кварков, т. е. частиц, имеющих дробные (1/3 и 2/3 элементарного) заряды, из которых состоят все элементарные частицы - адроны, учас­твующие в так называемых “сильных взаимодействиях”. Масса кварка кратно превосходит массу “элементарной частицы”, в состав которой входят 2-3 кварка. Физика различила несколько видов кварков, кото­рые в свою очередь отличаются по “цвету” и “шарму”. Кварки, в отли­чие от поведения нуклонов в составе атомного ядра, не существуют вне элементарной частицы (“невылетаемость” кварка). Взаимодейс­твие кварков осуществляется благодаря другим частицам, названным глюонами. Все многообразие сильнодействующих элементарных час­тиц современная физика объясняет комбинацией различных видов и свойств кварков. Позднее в физике вводится гипотеза протокварков.

Важнейшее направление развития современной физики — так называемые “Великое объединение” и “Суперобъединение” — попыт­ка свести четыре основных вида физического взаимодействия (силь­ного, слабого, электромагнитного и гравитационного) к одному фун­даментальному взаимодействию, которое позволило бы объяснить физическую форму материи в целом и создать наиболее фундамента­льную физическую теорию. В первые мгновения “Большого взрыва” действовала единая универсальная физическая сила, от которой затем отщепляются гравитация и остальные формы взаимодействия. В русле этих исследований разработано, например, представление о “струнах” как одних из наиболее древних физических структур, возникающих в начале Большого взрыва и, возможно, сохранившихся где-нибудь в космосе. Десять погонных метров “струны” диаметром 10-28 см обла­дают массой Луны.

Проблема развития в физике. В течение столетий физика, изу­чавшая последовательность различных по сложности уровней: элемен­тарные частицы — ядра — атом — молекулы — макротела — по сути имела дело лишь с фиксированными, “застывшими” результатами раз­вития, своего рода кристаллизовавшимся процессом развития. Идея развития впервые входит в фундаментальные концепции физики с по­явлением общей теории относительности и созданной на ее основе ре­лятивистской космологии, идеями. А.А. Фридмана. Идея развития ви­димой Вселенной, выраженная в концепции “горячей Вселенной”, по­лучила подтверждение в связи с открытием “красного смещения” спектра удаленных галактик (1929) и “реликтового излучения” (1965).

Идея развития Вселенной “...полностью доказана наблюдени­ями для периода, начиная от нескольких лет, отсчитываемых от сингу­лярности, до сегодняшнего дня”[73]. Более поздние исследования позво­лили приблизиться к “началу” физического развития до долей секунды.

“Установленная современной наукой картина эволюции мате­рии во Вселенной на всех уровнях с необходимостью приводит к вы­воду о развитии в совершенно определенном направлении: от простого к сложному. Действительно, за все 10-15 миллиардов лет развития материи во Вселенной мы наблюдаем непрерывное усложнение ее структуры и характера связей и взаимодействий между различными материальными системами, а также в пределах одной системы”[74]. И.С. Шкловский сравнивал “Большой взрыв” с “гигантским геном”, в суще­ственной мере предопределившим последующую историю Вселенной.

Проблему развития в физике нередко связывают также с термо­динамикой. Широко распространено представление о том, что разви­тие и самоорганизация — процесс, противоположный второму (“деградационному”) началу термодинамики, согласно которому замкну­тая система стремится к возрастанию энтропии, т.е. к менее организо­ванному состоянию как наиболее вероятному для нее[75]. Однако, хотя в определенной мере развитие и рост энтропии являются противополож­ными процессами, действительная связь развития и энтропии оказыва­ется, по-видимому, более сложной. В последнее время идея развития рассматривается в физике также в связи с современной теорией нерав­новесных процессов — синергетикой.

Материал современной физики позволяет определить специфи­чески физический способ, или форму, развития. С момента “Большого взрыва” развитие ФФМ осуществлялось первоначально путем преиму­щественно дифференциации, возникновения все большего многообра­зия физических объектов, затем, все в большей степени, посредством прямого субстратного синтеза, интеграции простых образований в более сложные (например, интеграции элементарных частиц в ядра, атомы, молекулы и т. д.). Важнейшей особенностью этого процесса дифференциации — интеграции является его масс-энергетический характер.

Один из сложнейших вопросов философии и физики - о зако­нах, определяющих развитие физической формы материи. Традицион­ный (и довольно простой) подход заключается в том, чтобы искать та­кие специальные физические, химические и другие частнонаучные за­коны, которые бы непосредственно управляли развитием физической, химической и других форм материи. Однако ни в физике, ни в химии или биологии таких законов не обнаружено. Другой, более глубокий, с нашей точки зрения, подход к проблеме частнонаучных законов раз­вития предложен Т.С. Васильевой[76]. С ее точки зрения, вся совокуп­ность законов частных наук выступает, на своем достаточно глубоком и скрытом уровне, в качестве законов развития. В законах физики, химии и биологии содержится скрытый, имплицитный уровень, пред­ставляющий собой эволюционное содержание этих законов.

С предложенных позиций логично признать, что, поскольку все фи­зические процессы суть масс-энергетические процессы, связанные с затра­тами энергии, важнейшим законом физического развития является Е=тс2.

Обычно физику рассматривают в качестве наиболее зрелой ес­тественной науки, опирающейся на строгие и достоверные методы ис­следования и являющейся в известной степени эталоном для других частных наук. Однако наиболее общие представления современной физики в некотором существенном плане стоят ниже теоретического уровня современной химии и биологии. Современная биологическая теория эволюции опирается на широкий фундамент химии и физики, например, молекулярной биологии, генетики, без которых они не име­ли бы сколько-нибудь строгого научного смысла. Иное положение в космологии, основанной на общей теории относительности. Создавая теорию эволюции видимой. Вселенной, выдвинув две важнейшие эво­люционные космологические модели — “открытую” и “закрытую”, физика не опирается при этом на какие-либо лежащие “ниже” ее тео­ретические основания. С позиций “открытой” модели видимая Все­ленная будет бесконечно расширяться, что приведет к замедлению и “смерти” физических процессов, а также, следовательно, биологичес­кой и социальной жизни. С точки зрения “закрытой” модели расшире­ние неизбежно сменится сжатием, коллапсом и также гибелью живого.

Однако с позиций философской концепции единого закономер­ного мирового процесса, фундаментальных положений диалектичес­кого материализма физическая форма материи не является наипро­стейшей формой материи, или “праматерией”. С этой точки зрения не­обходимо выдвинуть гипотезу о существовании дофизических форм материи. Проникновение науки на субфизический уровень позволит глубже понять природу физических объектов и явлений, подобно то­му, как физика и химия придали современный научный вид коренным представлениям биологии. До этого момента все физические модели видимой Вселенной и, следовательно, представления о будущем Все­ленной, жизни и разума будут оставаться лишь гипотезами.

Природа массы и энергии является крупнейшей проблемой фи­зики. С точки зрения американского физика Ф. Дайсона, нельзя будет до конца понять происхождение и судьбу энергии во Вселенной, рас­сматривая ее отдельно, вне факта существования жизни и разума. Дайсон глубоко прав: сущность жизни, разума, массы, энергии и других важнейших свойств тех или иных форм материи может быть понята то­лько в контексте единого бесконечного мирового процесса развития.

Согласно представлениям современной физики эволюция физи­ческой Вселенной с необходимостью приводит к возникновению ато­мов, с которыми связана качественная граница, разделяющая физичес­кую и химическую формы материи. К стадии рекомбинации в ходе расширения Вселенной из свыше трехсот типов элементарных частиц “выживают” наиболее устойчивые частицы — нуклоны и электроны, образующие разнообразные и относительно стабильные системы — ядра и атомы. В развитии ФФМ обнаруживается строгая и необходи­мая объективная логика — от мощных масс-энергетических процес­сов, в которые вовлечены колоссальные массы и энергия, к слабым масс-энергетическим процессам, связанным с электронной оболочкой атомов. Коренным качественным скачком в развитии физической формы материи было возникновение атомной организации материи, что означало конец образования разнообразия микрообъектов (“разви­тия в микромире”) и начало построения макросистем. В атоме синте­зированы противоположные свойства - устойчивость и изменчивость, стабильное ядро и лабильная электронная оболочка; благодаря сильно­му взаимодействию нуклонов, ядра атомов не чувствительны к элек­тромагнитному взаимодействию на уровне электронных оболочек, по­этому основным способом взаимодействия материи на атомно-молекулярном уровне ее структуры оказывается соединение неизменных эле­ментов в изменяющиеся системы, т е прямой синтез субстратов, включающий в себя свою противоположность — распад химических систем на составные части”[77].

Химическая форма материи является, таким образом, законо­мерным продуктом развития масс-энергетических процессов, законо­мерным результатом развития физической формы материи.

 

Химическая форма материи

Химическая форма материи (ХФМ)[78] включает уровни от атома до макромолекулярных комплексов, лежащих в преддверии живой ма­терии. В современной науке выделение химического как одной из ос­новных форм материи, ступени единого мирового процесса связано с большими теоретическими трудностями, преодоление которых воз­можно только совместными усилиями теоретической химии и философии. В условиях современной научно-технической революции грани между основными формами бытия становятся чрезвычайно подвиж­ными и самостоятельное существование фундаментальных наук может быть установлено только с помощью глубокого философского анали­за, т. е. с использованием форм мысли, которые выходят далеко за рамки частнонаучного мышления.

Известно, что современная химия стала зрелой наукой, когда она получила хорошо разработанный физический фундамент, прежде всего — квантовую теорию химической связи. Процесс проникнове­ния понятий и методов физики в химию привел к появлению редукционизма — современной формы механицизма, заключающейся в по­пытке полного сведения химического к физическому, растворения хи­мического качества в физическом, или, иначе, физикализму. Эта по­пытка является частным случаем редукционизма вообще, выражающе­гося также в тенденции сведения биологического к химическому, со­циального к биологическому и, в конечном счете — всех высших форм материи к физической (радикальный физикализм). С позиций радикального физикализма все формы материи являются лишь различ­ными модификациями физической реальности.

Физикализм и редукционизм имеют некоторые основания, чрез­мерно преувеличиваемые и абсолютизируемые. Как известно, химиче­ская форма материи “строится” из физической. Химический атом син­тезирован из протонов, нейтронов и электронов. Химическое, как и любая другая форма материи (мы будем рассматривать эту закономер­ность позднее), возникает на основе предыдущей и включает часть ее в себя, в качестве своей “основы” или “фундамента”. Поэтому каждый элемент или “шаг” химической формы материи имеет свой физичес­кий “эквивалент”. Каждый химический атом выступает также как уни­кальное физическое образование и может быть описан как физическая индивидуальность. В тенденции физика должна под своим углом зре­ния объяснить все химические феномены и связи. “...Вся система хи­мических элементов во всем ее широком многообразии в настоящее время в принципе может быть выведена из законов физики”[79].

Однако совершенно бесспорно, что от физического описания и объяснения ускользает собственно химическое качество и, тем более, качества жизни и социальной жизни. Проблема “неуловимого химиче­ского качества” разрешима только на основе целостного подхода к миру, взгляда на мир как единый закономерный процесс, в котором химическая форма материи занимает свое закономерное место и мо­жет быть понята в сопоставлении с другими формами материи.

Обычно химическое качество связывается химиками с атомами как неделимыми химическими целостностями. Известный специалист в области философских вопросов химии Б.М. Кедров определял атом как “исходную химическую клеточку”, своего рода химическую еди­ницу и рассматривал целостность атома как основной аргумент в по­льзу несводимости химического к физическому[80]. Однако этот аргу­мент, действительно свидетельствуя в пользу существования химичес­кого качества, обнаруживает в то же время свою существенную недо­статочность, поскольку с точки зрения квантовой механики атом явля­ется и физической целостностью, на основе которой возникает хими­ческая целостность. Поэтому в некоторой степени схваченное, хими­ческое качество все же от нас ускользает. В определении химического качества мы несколько продвинемся дальше, если учтем, что физичес­кая целостность атома является целостностью физического многообра­зия - ядра и электронов, которые остаются всецело физическими обра­зованиями, а химическая целостность — слитно и неделима.

В пользу специфического и несводимого химического качества говорит, далее, тот факт, что ни одна фундаментальная химическая проблема — химической связи, реакционной способности, валентно­сти и т.д. не получила своего решения в квантовой химии, которая, не­смотря на ее огромную роль в химии, не способна объяснить, что в хи­мическом есть собственно химическое. Как отмечает Г. Фукс, предмет химии может быть адекватно понят только химией[81]. “...Никакие физи­ческие методы сами по себе, — утверждает М.В. Волькенштейн, — не были бы в состоянии установить структуру сложных молекул без хи­мических исследований”[82].

Сильным аргументом в пользу качественного своеобразия хи­мической реальности является ссылка на основной химический пери­одический закон, открытый Д. И. Менделеевым. Химическую реаль­ность поэтому нередко определяют как “менделеевский мир”. Однако и эта ссылка не дает окончательного решения вопроса о специфичес­ком химическом качестве.

Существенным свидетельством в пользу своеобразной химичес­кой реальности является тот факт, что химические связи между качес­твенно различными атомами в физическом отношении различаются только количественно. Так, связь Н-С отличается от связи H-F с физи­ческой стороны лишь различной полярностью или разностью электроотрицательности атомов (0,4 и 1,9). С химической же стороны — это связи водорода с качественно различными химическими элементами.

Наиболее крупным аргументом в пользу признания несводимо­го химического качества, своеобразной химической формы объектив­ной реальности является то, что химический мир — это над-массэнергеттеский мир, в котором слабые масс-энергетические процессы хо­тя и имеют место, образуя физическую основу химизма, но не опреде­ляют его природы. Как отмечает Э.Штрекер, “вещество и качество, как таковые, нигде не выступают в уравнениях физики. Вещество вы­ступает в них только в виде массы, а качество имеет значение лишь постольку, поскольку встречающиеся иногда в функциональных урав­нениях константы имеют для каждого вещества свои числовые значе­ния. Еще не было никакой возможности выразить вещественную при­роду в ее качественной специфичности в виде массы и числа”[83].

Химический мир, как подметил еще Гегель, характеризуется не­сравненно большим качественным многообразием, чем физический. Образуясь всего из трех основных элементарных частиц (причем час­тиц, обладающих наибольшим многообразием физических связей), хи­мическое включает свыше 100 химических элементов, из которых воз­никает огромное качественное многообразие химических соединений. В настоящее время идентифицировано порядка 8 миллионов химичес­ких соединений и ежегодно синтезируется до полумиллиона соедине­ний. А. Ленинджер полагает, что общее число возможных типов бел­ков составляет 1010-12, а нуклеиновых кислот— 1010.

Весьма существенной чертой химического мира является более заметное, чем в физическом мире, развитие особенного. В отличие от ядер и электронов химические соединения обладают ярко выраженной индивидуальностью. Д. И. Менделеев подчеркивал, что химический мир — “это целый живой мир с бесконечным разнообразием индиви­дуальностей как в самих элементах, так и в их сочетаниях”[84]. Масс-энергетические взаимодействия в химии характеризуются значительно меньшей индивидуальностью, чем над-массэнергетические. Послед­ние связаны прежде всего с одним из важнейших свойств химических веществ —химическом сродством.

Химический способ развития. Качественно более сложный хи­мический субстрат обладает новым, отличным от физического, спосо­бом развития.

Химические элементы составляют низший, наиболее простой и исходный уровень химической эволюции. Они возникают в результате предшествующего физического процесса эволюции, обладают неоди­наковой физической и химической сложностью и, следовательно, раз­личными возможностями дальнейшего химического процесса разви­тия, различным потенциалом развития. Т.С. Васильева установила за­мечательную особенность разнородного усложнения физических и хи­мических атомов в ходе роста их порядкового номера в системе Мен­делеева. Если в физическом отношении химические элементы, начи­ная с водорода, усложняются сравнительно однородно и линейно, так что уран и следующие за ним элементы оказываются безусловно более сложными, чем предшествующие, то химически элементы усложняют­ся нелинейно. Первоначально их химическая сложность быстро растет, достигая максимума у углерода, а затем резко падает. Уран в физичес­ком отношении сложнее, а в химическом — значительно проще, чем углерод. Последний — наиболее сложный химический элемент, обла­дающий наивысшим потенциалом химического развития. В той или иной мере близкими углероду эволюционными потенциалами облада­ют водород, кислород, азот, сера и фосфор. В силу этого углерод, во­дород, кислород и другие химические элементы играют главную роль в химической эволюции, закономерно приводящей к появлению жиз­ни, и называются поэтому элементами-органогенами. Менделеев пи­сал, что “ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде”[85].

В основе представления о химическом способе объективно-ре­ального существования и развития лежит понятие химической реак­ции. Претерпев большую эволюцию в истории науки, это понятие на­ходится в центре теоретических представлений современной химии. В понятии реакции химический способ объективно-реального существо­вания и развития определен применительно к отдельным превращени­ям. Химическая реакция — относительно самостоятельное превраще­ние, связанное с некоторым конечным числом реагирующих субстра­тов. На уровне понятия реакции не раскрывается целостная природа и направленность объективно-реального существования и развития ХФМ. Это делает необходимым перейти к более обобщенным и широ­ким понятиям.

Химический процесс есть единство синтеза (ассоциации) и распада (диссоциации). Поскольку химический синтез приводит к усложнению веществ, он является химической формой прогресса, а диссоциация — химическим проявлением регресса. Если химический способ развития рассматривать только на уровне отдельных реакций, то может возникнуть представление о равенстве, равносильности про­цессов синтеза и распада. Однако более глубокий, целостный (системный) подход к совокупному миру химических превращений дает осно­вания для вывода, что общим интегральным направлением химичес­ких превращений является прямой субстратный синтез. Коренная особенность такого синтеза состоит в том, что переход в новое, выс­шее качество, новую сущность не может быть осуществлен отдель­ным самостоятельно существующим субстратом. Для такого перехода отдельный химический субстрат нуждается в другом субстрате. В хи­мическом развитии новое качество, новая сущность выступают как па­ритетный результат двух или более химических субстратов.

Отдельный самостоятельно существующий субстрат (химичес­кий атом или молекула) не обладает, следовательно, достаточным бо­гатством внутреннего содержания (содержания “в себе”) и нуждается в существенном дополнении другим. На уровне химической формы материи отдельный субстрат характеризуется существенной внутрен­ней неполнотой, т. е. недостаточным для самостоятельного развития содержанием.

Субстратный синтез выступает в качестве общего для физичес­кой и химической форм материи способа объективно-реального суще­ствования и развития, однако он обладает в них своей существенной спецификой. Химический субстратный синтез — прежде всего над-массэнергетический синтез, хотя он и происходит с помощью физи­ческого (электромагнитного) синтеза, связанного с изменением вне­шней электронной оболочки атомов. В отличие от “суммарного” и “массового” характера физического синтеза (в особенности наиболее универсального — гравитационного), химический синтез имеет высо­коизбирательный характер, ибо происходит по законам химического сродства. Благодаря сродству, проявляемому качественно различными элементами друг к другу, химический синтез есть не просто притяже­ние субстратов, но их взаимное изменение с потерей ряда прежних и приобретением новых общих свойств. Это синтез избирательно вза­имодействующих качеств.

Химический субстратный синтез включает особый, специфиче­ски химический механизм — катализ, т. е. способность ускорения хи­мических превращений. В химической форме материи, таким образом, возникает своеобразная способность многократного самоускорения движения и развития.

Химический субстратный синтез — высшая и предельная фор­ма субстратного синтеза в природе. Как способ развития, субстратный синтез связан с относительно простыми субстратами и с определенно­го уровня сложности становится невозможным. Это объясняется уже тем, что более сложные субстраты обладают большой автономностью и не могут объединяться.

Имеет ли развитие направление

Закономерный характер химической эволюции. В развитии ХФМ можно выделить целый ряд направлений[86]. Общим направ­лением всех линий развития является движение от низшего к высше­му, от простого к сложному: от химических элементов к молекулам и их комплексам. В пределах общего направления можно выделить ма­гистральное, т. е. основное направление, с которым

связано наиболь­шее богатство, многообразие химических превращений, и побочные, или тупиковые, ветви развития.

Магистральное направление развития ХФМ связано с углеро­дом как наиболее сложным и богатым химическим элементом, и дру­гими элементами-органогенами — Н, О, N, S, Ph.

Тупиковые ветви развития существуют благодаря магистрали химической эволюции, поскольку они представляют собой ответвле­ния от нее. В то же время тупиковые направления обусловливают раз­витие на магистральной линии, создают необходимые для химической эволюции условия. В конечном счете химическая эволюция законо­мерно приводит к возникновению живой материи.

Что определяет направленность химической эволюции от про­стого к сложному, к возникновению живого? По этому ключевому во­просу в естественнонаучной и философской литературе существуют две основные точки зрения. Одни ученые (А.И. Опарин, Дж. Бернал, В.И. Кузнецов) считают, что фактором, определяющим развитие хими­ческого в сторону живого, является химический отбор, который дает оценку развивающихся химических систем относительно среды. В процессе отбора таких химических систем сохраняются и продолжают эволюционировать все более сложные системы. “Выживаемость” хи­мических систем обусловлена усложняющимся химическим содержа­нием систем. Согласно второй точке зрения направленность химичес­кой эволюции определяется внутренними ограничениями, вытекающи­ми из свойств химических элементов и их соединений. Не среда со­вершенствует химическое, а химическое совершенствует само себя при сопоставлении со средой (посредством химического отбора наи­более устойчивых систем). Активным фактором отбора оказывается, с этой точки зрения, само химическое, “отбор есть самоотбор “под углом зрения” соответствия среде”[87]. Фактически к этой точке зрения подходил и А.И. Опарин, который подчеркивал способность химичес­кой материи к саморазвитию.

Вторая точка зрения в различных вариантах обосновывается Д. Кеньоном[88] и А П. Руденко. С позиций концепции “биохимического предопределения” Д. Кеньона каждая ступень химической эволюции в основных чертах предопределена свойствами химических соединений предшествующей ступени химической эволюции и не является случай­ной по отношению к последней.

В разработанной А.П. Руденко теории саморазвития открытых каталитических систем[89] объектом химической эволюции рассматрива­ется не молекула, а каталитическая система, включающая взаимо­действующие молекулы, катализаторы и химическую среду Основ­ным показателем развития каталитической системы является абсолют­ная каталитическая активность, рост которой служит основой эволю­ционных изменений каталитической системы, ее усложнения, которое происходит с нарастающей вероятностью.

В конкретном химическом аспекте процесс эволюции химичес­кой материи и возникновение живой материи описан теорией А.И. Опарина, считающейся наиболее вероятной гипотетической теорией происхождения жизни[90]. Согласно этой гипотезе предбиологическая эволюция прошла несколько основных ступеней — органических ве­ществ (начиная с простейших соединений углерода СН, CN, СО) — высокомолекулярных полимеров (прежде всего первичных белков и простейших нуклеиновых кислот) — индивидуальных многомолеку­лярных систем, в результате направленной эволюции которых возни­кали первичные примитивные организмы.

В процессе химической эволюции обнаруживается глубинная, внутренняя логика развития, которая скрыта под частностями и “дета­лями” химического процесса и может быть выявлена только совмест­ными усилиями теоретической химии и философской науки. Как уже отмечалось, способом химического существования и развития являет­ся прямой субстратный синтез. Его основным внутренним противоре­чием является противоречие между субстратным синтезом как целост­ным процессом и включенным в него процессом химической диссоци­ации, или распада.

Диалектический “смысл” субстратного синтеза заключается в том, что химические вещества по отдельности не обладают достаточ­ным для саморазвития содержанием и поэтому химическая эволюция может осуществляться только посредством синтеза этих веществ. Преобладание, или абсолютность, химического синтеза ярко выражено уже на исходном уровне химической эволюции — в химических эле­ментах, основной тенденцией которых является тенденция к синтезу, а не распаду, что предопределено уже физической структурой элемен­тов — стабильностью атомного ядра и способностью электронных оболочек к электромагнитным взаимодействиям. Выражаясь гегелевс­ким языком, химические элементы и их соединения “определены к синтезу”.

Однако “паритетность” химических синтезов является относи­тельной, ибо химические элементы неравноценны по своему химичес­кому содержанию и, следовательно, эволюционному потенциалу. По­скольку наиболее богатым химическим элементом является углерод, с ним связано магистральное направление химической эволюции. Ато­мы углерода образуют так называемую полипептидную связь, после­довательность сотен тысяч атомов углерода, к которой могут присо­единяться любые другие химические атомы и их группы. Химическая эволюция приводит к появлению такого химического субстрата, кото­рый получает все более богатое химическое содержание и становится основой химической эволюции, приобретает автономность и устойчи­вость Субстратный синтез теряет при этом свой прежний “паритет­ный” характер, постепенно исчерпывает себя, а развивающийся хими­ческий субстрат становится все более способным к самостоятельной эволюции, к саморазвитию. Важнейшим свойством такого субстрата оказывается самосохранение, которое осуществляется благодаря тому, что химическая диссоциация превращается в средство поддержания синтеза, поддержания целостности автономного субстрата. Когда хи­мический процесс оказывается таким образом “замкнутым на самого себя”, т.е. становится средством поддержания целостности материаль­ной системы, химический субстрат превращается в живую материю, а химический процесс становится жизненным процессом. По глубокому замечанию Ф. Энгельса, жизнь — это самосохраняющийся химичес­кий процесс Жизнь, таким образом, является закономерным и необхо­димым результатом химической эволюции природы.

В химической эволюции обнаруживается одна из важнейших закономерностей развития — аккумуляция содержания низших ступе­ней в высших. Химическая эволюция представляет собой не простую смену одного состояния другим, а накопление, синтез основных резу­льтатов развития в последующих ступенях, в результате чего возника­ет материальный субстрат, обладающий наибольшим многообразием самых различных и даже противоположных свойств. Так, белки, один из важнейших компонентов живой материи, обладают кислотными и основными, гидрофильными и гидрофобными свойствами, обнаружи­вают все основные типы реакций. В нуклеиновых кислотах — втором важнейшем компоненте живой материи — благодаря их особой струк­туре происходит накопление информационного содержания в сжатой, кодированной форме.

Возникновение жизни обусловлено прежде всего магистраль­ным направлением химической эволюции, где химическая форма ма­терии выступает в своем оптимальном, или достаточно полном, соде­ржании или многообразии. Учитывая это обстоятельство, большинс­тво крупнейших химиков мира считают, что жизнь не может возни­кнуть на какой-либо иной, кроме углеродной, основе, например, на ба­зе кремния или азота, которые обладают несравненно меньшим, чем углерод, многообразием химических связей и, следовательно, мень­шим потенциалом развития. “Все данные физико-химических исследо­ваний, — пишет А.И. Опарин, — говорят нам о том, что иных форм соединений, ведущих к развитию жизни, не может быть”[91]. По мнению В.Г. Фесенкова, “во Вселенной органическая жизнь, если она вообще существует, может быть построена только на основе углеводородных соединений”[92].