Синтаксис команд. Стандартные функции

Синтаксис команд.

Стандартная команда Maple состоит из имени команды и ее параметров, указанных в круглых скобках: command(p1, p2, …). В конце каждой команды должен быть знак (;) или (:). Разделитель (;) означает, что в области вывода после выполнения этой команды будет сразу виден результат. Разделитель (:) используется для отмены вывода, то есть когда команда выполняется, но ее результат на экран не выводится.

Символ процента (%) служит для вызова предыдущей команды. Этот символ играет роль краткосрочной замены предыдущей команды с целью сокращения записи. Пример использования (%):

> a+b;

a+b

> %+c;

a+b+c.

Для присвоения переменной заданного значения используется знак присвоить (:=).

Когда программа Maple запускается, она не имеет ни одной команды, полностью загруженной в память. Большая часть команд имеют указатели их нахождения, и при вызове они загружаются автоматически. Другие команды находятся в стандартной библиотеке и перед выполнением обязательно должны быть вызваны командой readlib(command), гдеcommand – имя вызываемой команды. Остальная часть процедур Maple содержится в специальных библиотеках подпрограмм, называемых пакетами. Пакеты необходимо подгружать при каждом запуске файла с командами из этих библиотек. Имеется два способа вызова команды из пакета:

1. можно загрузить весь пакет командой with(package) где package – имя пакета;

2. вызов какой-нибудь одной команды command из любого пакета packageможно осуществить, если набрать команду в специальном формате:

> package[command](options);

где вначале записывается название пакета package, из которого надо вызвать команду, а затем в квадратных скобках набирается имя самой команды command, и после чего в круглых скобках следуют параметры options данной команды.

К библиотекам подпрограмм Maple относятся, например, следующие пакеты: linalg – содержит операции линейной алгебры; geometry – решение задач планиметрии; geom3d – решение задач стереометрии; student – содержит команды, позволяющие провести поэтапное решение задачи в аналитическом виде с промежуточными вычислениями.

Стандартные функции.

Стандартные функции Maple
Математическая запись Запись в Maple
exp(x)
ln(x)
log10(x)
log[a](x)
sqrt(x)
abs(x)
sin(x)
cos(x)
tan(x)
cot(x)
sec(x)
csc(x)
arcsin(x)
arccos(x)
arctan(x)
arccot(x)
sinh(x)
cosh(x)
tanh(x)
coth(x)
- функция Дирака Dirac(x)
- функция Хевиссайда Нeaviside(х)

Maple содержит огромное количество специальных функций, таких, как Бесселевы функции, Эйлеровы бета- и гамма – функции, интеграл ошибок, эллиптические интегралы, различные ортогональные полиномы.

С помощью функции exp(x)определяется число е=2.718281828… посредством записи exp(1).

Задание 3.

1. Перейдите в текстовый режим и наберите “Задание №3”. После не забудьте перейти в режим командной строки.

2. Вычислите Для этого наберите в командной строке:

> cot(Pi/3)+tan(14*Pi/3);

Нажмите Enter. В результате в области вывода должно появиться число: .

3. Вычислите .

Для этого наберите в командной строке:

> combine((sin(Pi/8))^4+(cos(3*Pi/8))^4+

(sin(5*Pi/8))^4+ (cos(7*Pi/8))^4);

Нажмите Enter. (значение команды combine– преобразовывать выражения, например, со степенями). В результате в области вывода должно появиться число: .

§1.4 Преобразование математических выражений

Maple обладает широкими возможностями для проведения аналитических преобразований математических формул. К ним относятся такие операции, как приведение подобных, разложение на множители, раскрытие скобок, приведение рациональной дроби к нормальному виду и многие другие.

Выделение частей выражений.

Математическая формула, над которой будут производиться преобразования, записывается в следующей форме: >eq:=exp1=exp2; где eq – произвольное имя выражения, exp1 – условное обозначение левой части формулы, exp2– условное обозначение правой части формулы.

Выделение правой части выражения осуществляется командой rhs(eq), выделение левой части выражения – командойlhs(eq). Рассмотрим пример:

> eq:=a^2-b^2=c;

eq :=

> lhs(eq);

> rhs(eq);

с

Если задана рациональная дробь вида a/b, то можно выделить ее числитель и знаменатель с помощью команд numer иdenom, соответственно. Пример:

> f:=(a^2+b)/(2*a-b);

> numer(f);

> denom(f);

Тождественные преобразования выражений.

Раскрытие скобок выражения eq осуществляется командой expand(eq). Пример:

> eq:=(x+1)*(x-1)*(x^2-x+1)*(x^2+x+1);

> expand(eq);

Разложение многочлена на множители осуществляется командой factor(eq). Пример:

> p:=x^5-x^4-7*x^3+x^2+6*x;

> factor(p);

Команда expand может иметь дополнительный параметр, позволяющий при раскрытии скобок оставлять определенное выражение без изменений. Например, пусть требуется каждое слагаемое выражения умножить на выражение (x+a). Тогда в командной строке следует написать:

> expand((x+a)*(ln(x)+exp(x)-y^2), (x+a));

Дробь можно привести к нормальному виду с помощью команды normal(eq). Например:

> f:=(a^4-b^4)/((a^2+b^2)*a*b);

> normal(f);

Упрощение выражений осуществляется командой simplify(eq). Пример:

> eq:=(cos(x)-sin(x))*(cos(x)+sin(x)):

> simplify(eq);

Приведение подобных членов в выражении осуществляется командой collect(exp,var), где exp – выражение, var – имя переменной, относительно которой следует собирать подобные. В команде simplify в качестве параметров можно указать, какие выражения преобразовывать. Например, при указании simplify(eq,trig) будет производиться упрощение при использовании большого числа тригонометрических соотношений. Стандартные параметры имеют названия: power – для степенных преобразований; radical или sqrt – для преобразования корней; exp – преобразование экспонент; ln – преобразование логарифмов. Использование параметров намного увеличивает эффективность команды simplify.

Объединить показатели степенных функций или понизить степень тригонометрических функций можно при помощи команды combine(eq,param), где eq – выражение, param – параметры, указывающие, какой тип функций преобразовать, например, trig – для тригонометрических, power – для степенных. Пример:

> combine(4*sin(x)^3, trig);

Для упрощения выражений, содержащих не только квадратные корни, но и корни других степеней, лучше использовать команду radnormal(eq). Пример:

> sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3))=

radnormal(sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3)));

С помощью команды convert(exp, param), где exp – выражение, которое будет преобразовано в указанный типparam. В частности, можно преобразовать выражение, содержащее sinx и cosx, в выражение, содержащее только tgx, если указать в качестве параметра tan, или, наоборот, tgx, ctgx можно перевести в sinx и сosx, если в параметрах указатьsincos.

Вообще, команда convert имеет более широкое назначение. Она осуществляет преобразование выражения одного типа в другой. Например: convert(list, vector) – преобразование некоторого списка list в вектор с теми же элементами;convert(expr, string) – преобразование математического выражения в его текстовую запись. Для вызова подробной информации о назначении параметров команды convert следует обратиться к справочной системе, набравconvert[termin].

Если вы забыли параметры какой-либо команды, то можно воспользоваться справочной системой Maple. Для вызова справки по конкретной команде, следует выделить набранное имя этой команды и нажать клавишу F1. Если команда набрана правильно, то появится описание этой команды (в большинстве версий Maple помощь на английском языке).

Задание 4.

1. Перейдите в текстовый режим и наберите “Задание №4”. После не забудьте перейти в режим командной строки. Перед выполнением каждого пункта этого задания обязательно набирайте команду обновления restart;

2. Разложить полином на множители . Для этого наберите в командной строке:

> factor(x^3+4*x^2+2*x-4);

После нажатия клавиши Enter должно получиться .

3. Упростить выражение . Наберите:

> eq:=(1+sin(2*x)+cos(2*x))/(1+sin(2*x)-cos(2*x)):

> convert(eq, tan):

> eq=normal(%);

.

4. Упростить выражение . Для этого наберите:

> eq:=3*(sin(x)^4+cos(x)^4)-2*(sin(x)^6+cos(x)^6):

> eq=combine(eq, trig);

5. Выполните все контрольные задания. Перед их выполнением не забудьте набрать в текстовом режиме “Контрольные задания”. Результаты выполнения заданий покажите преподавателю.

6. Сохраните файл со всеми выполненными заданиями на диск.

7. Ответьте на все контрольные вопросы.

Контрольные задания

1. Вычислить: .

2. Вычислить: .

3. Вычислить точное и значение выражения: .

4. Записать формулы: ; .

5. Разложить на множители полином .

6. Упростить выражение

Контрольные вопросы

  1. Что такое Maple и для чего он предназначен?
  2. Опишите основные элементы окна Maple.
  3. На какие условные части делится рабочее поле Maple и что в этих частях отображается?
  4. Как перевести командную строку в текстовую и наоборот?
  5. В каком режиме проходит сеанс работы в Maple?
  6. Перечислите пункты основного меню Maple и их назначение.
  7. Какое стандартное расширение присваивается файлу рабочего листа Maple?
  8. Как представляются в Maple основные математические константы?
  9. Опишите виды представления рационального числа в Maple.
  10. Как получить приближенное значение рационального числа?
  11. Какими разделительными знаками заканчиваются команды в Maple и чем они отличаются?
  12. Какой командой осуществляется вызов библиотеки подпрограмм?
  13. Объясните назначение команд factor, expand, normal,simplify,combine, convert.