Истинное значение измеряемой величины

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Приборостроительный факультет

Кафедра экспериментальной и теоретической физики

ИЗУЧЕНИЕ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ

Методическое указание к лабораторной работе №1

по дисциплине «Общая физика»

раздел «Механика. Молекулярная физика»

Минск 2011 г.


Введение

 

Физические законы устанавливаются и проверяются путем накопления и количественного сопоставления изменений экспериментальных данных, характеризующих изучаемое физическое явление. Таким образом, физика - это количественная наука, устанавливающая физические закономерности, которые выражаются в виде математических формул, связывающих между собой числовые значения физических параметров. Практически такая же методика измерений используется и в инженерных исследованиях и испытаниях. Поэтому целью физического практикума является выработка навыков правильного проведения измерений числовых значений различных физических параметров и умения оценивать погрешности и сопоставлять полученные данные с математическими формулами.

 

I Физические измерения и погрешности

 

Прежде всего, поясним, что вообще понимается под измерением. Измерением называется сравнение интересующей нас физической величины с соответствующим эталоном или измерительным прибором, проградуированным по эталону. По характеру проведения измерений их делят на прямые и косвенные. Под прямыми измерениями понимают такие измерения, при котором в ходе опыта непосредственно измеряется интересующая нас величина. Однако далеко не все величины можно определить путем прямого измерения. Например, плотность тела, определить непосредственным измерением весьма затруднительно. Но известно, что известно, что плотность определяется по формуле

 

(1)

 

где m и - v масса и объем, v=а.b.c, определяемый, например, геометрическими размерами образца. Измерение массы тела и его объема уже не представляет существенных трудностей, поэтому, измерив на опыте величины m и а,b,c, мы можем подставить их в (1) и рассчитать интересующее нас значение ρ. Такие измерения, при которых интересующая нас величина не измеряется непосредственно, а рассчитывается по некоторой формуле, на основе результатов прямых измерений, называются косвенными измерениями.

 

Погрешности измерений

 

Опыты показывают, что истинное значение любой физической величины определить невозможно, т.к. операции измерений производятся приборами, обладающими определенной предельной точностью, а сами измерения сопровождаются целым рядом объективных и субъективных ошибок или погрешностей. По характеру проявления погрешности можно условно разделить на следующие классы: приборные, систематические, случайные.

Приборные погрешности. Если измерительный прибор исправен и отрегулирован, то на нем можно провести измерения с ограниченной точностью, определяемой типом прибора. Принято приборную погрешность стрелочного прибора считать равной половине наименьшего деления его шкалы. В приборах с цифровым отсчетом приборную ошибку приравнивают к величине одного наименьшего разряда шкалы прибора.

Систематические погрешности - это ошибки, величина и знак которых постоянны для всей серии измерений, проведенных одним и тем же методом и с помощью одних и тех же измерительных приборов.

При проведении измерений важен не только учет систематических ошибок, но необходимо также добиваться их исключения.

Систематические погрешности условно разделяются на четыре группы:

1) погрешности, природа которых известна и их величина может быть достаточно точно определена. Такой ошибкой является, например, изменение измеряемой массы в воздухе, которая зависит от температуры, влажности, давления воздуха и т.д.;

2) погрешности, природа которых известна, но неизвестна сама величина погрешности. К таким погрешностям относятся ошибки, обусловленные измерительным прибором: неисправность самого прибора, несоответствие шкалы нулевому значению, классу точности данного прибора;

3) погрешности, о существовании которых можно не подозревать, но величина их зачастую может быть значительной. Такие ошибки возникают чаще всего при сложных измерениях. Простым примером такой ошибки является измерение плотности некоторого образца, содержащего внутри полости;

4) погрешности, обусловленные особенностями самого объекта измерения. Например, при измерении электропроводности металла из последнего берут отрезок проволоки. Погрешности могут возникнуть, если имеется какой-либо дефект в материале - трещина, утолщение проволоки или неоднородность, меняющие его сопротивление.

Случайные погрешности - это ошибки, которые изменяются случайным образом по знаку и величине при идентичных условиях повторных измерений одного и того же параметра.

 

Истинное значение измеряемой величины

 

Приведенные выше данные показывают, что, строго говоря, измерения истинного значения любой величины невозможно в принципе. Поэтому более корректный способ представления результата любого измерения состоит в том, что экспериментатор указывает свою наилучшую оценку измеряемой величины, а также интервал, в котором, как он уверен, она лежит. Таким образом, задача экспериментатора состоит в том, чтобы уменьшить влияние погрешностей за счет правильной техники измерений, сделать правильную наилучшую оценку результата измерения и величины погрешности этого результата.

Рассмотрим случай, когда систематические ошибки отсутствуют, а имеют место лишь случайные погрешности. Предположим, что нами произведено n измерений некоторой величины х, при этом получены n значений этой величины х1 х2 хi….хn. Округлим эти величины с учетом приборной ошибки и расположим в порядке возрастания. Определим в полученном множестве значений количество повторов (выпадений) отдельных результатов - ∆ni и вычислим вероятности их выпадения по формуле:

(2)

 

Полученные результаты также внесем в таблицу и построим на их основе график (рис.1) зависимости вероятности повторов отдельных результатов измерения от их величины - хi, т.е. функцию .

 

Pmax

хi

хв .

 

Рис. 1.

 

Из полученного рис.1 видно, что наиболее вероятным является некоторый результат хi= хв, которому соответствует максимальное значение вероятности выпадения Pmax.

Если этот результат (хв) принять за истинный (Хв = Хи), то абсолютную ошибку каждого измерения ∆хi, можно найти из выражения: ∆хi= хi,- хв и более того истинный результат измерения, очевидно, должен удовлетворять условию:

 

∆хi= хi,- хв=0 (3)

 

В этом можно убедиться, рассчитав абсолютные ошибки всех измерений, числа повторов каждой ошибки ∆n0 и вероятности выпадения ошибок

Кроме того, как следует из работ немецкого математика Г. Гаусса, все обсуждаемые выше закономерности наблюдаются на рис 2.

-∆x 0 +∆xi

 

Рис. 2.

Для повышения точности и снижения трудоемкости Гаусс предложил для нахождения истинного значения измеряемой величины использовать квадратичную функциональную зависимость вероятности ошибок в виде (4) изображенную на рис.3.

 

(4)

 

y

0 (∆хj)2

 

Рис.3.

 

Известно, что для нахождения экстремума функции необходимо приравнять нулю ее производную. Используем для этого новую функцию (4):

Возьмем производную от этой функции и приравняем её нулю.

 

(5)

После несложных преобразований получаем:

 

(6)

 

Таким образом, наиболее вероятным значением измеряемой величины является среднее арифметическое , получаемое от нескольких идентичных измерений. И этот же результат соответствует истинному значению многих измерений, представленных на Рис. 1.