ПРОТИВОПОЛОЖНОСТЬ ЛОГИЧЕСКАЯ
– вид отношения между противоположными понятиями или суждениями в традиционной логике. В отношении противоположности находятся такие несовместимые понятия, объемы которых включаются в объем более широкого, родового понятия, но не исчерпывают его полностью, напр. «белый — черный», «сладкий — горький», «высокий - низкий» и т. п. Если последнюю пару понятий отнести к людям, то класс «люди» можно разбить на три части: «высокие» — «среднего роста» — «низкие». Противоположные понятия «высокий» — «низкий» займут наиболее удаленные друг от друга части объема родового понятия, но не покроют его целиком.
В отношении противоположности находятся общеутвердительные и общеотрицательные суждения, говорящие об одном и том же классе предметов и об одном и том же свойстве, например: «Всякий человек добр» и «Ни один человек не добр». Такие суждения вместе не могут быть истинными, однако они оба могут оказаться ложными (как это имеет место в приведенном примере).
ПРОТИВОПОСТАВЛЕНИЕ ПРЕДИКАТУ- вид непосредственного умозаключения, в котором субъектом вывода является понятие, противоречащее предикату посылки, предикатом является субъект посылки, а связка изменяется на противоположную символически:
S есть Р. |
не-Р не есть S. |
П. п. представляет собой соединение превращения с обращением, поэтому при его выполнении следует сначала произвести превращение посылки, а затем обратить получившееся суждение: превращаем «S есть Р», получаем «S не есть не-Р», затем обращаем последнее суждение и приходим к выводу «не-Р не есть S». Затруднения здесь носят чисто грамматический характер. Чтобы избежать их, следует формулировать связку в явном виде и фиксировать отрицания. Из общеутвердительного суждения следует общеотрицательный вывод; из общеотрицательного суждения следует частноутвердительный вывод; из частноотрицательного суждения следует частноутвердительный вывод; из частноутвердительного суждения нельзя получить вывод путем П. п.
ПРОТИВОРЕЧИЕ- два высказывания, из которых одно является отрицанием другого. Напр.: «Латунь - химический элемент» и «Латунь не является химическим элементом», «2 - простое число» и «2 не является простым числом». В одном из противоречащих высказываний что-то утверждается, в другом это же самое отрицается, причем утверждение и отрицание касаются одного и того же объекта, взятого в одно и то же время и рассматриваемого в одном и том же отношении.
РАВЕНСТВО— отношение между знаковыми выражениями, обозначающими один и тот же объект, когда все, что можно высказать на языке соответствующей теории об одном из них, можно высказать и о другом, и наоборот, и при этом получать истинные высказывания. Обозначаемые объекты могут быть построены различным способом, напр., один объект может быть представлен как «3–5», а другой как «20–5», но между ними может быть поставлен знак Р.
Отношение Р позволяет заменять одни и те же объекты, построенные различным образом, друг на друга в различных контекстах (правило подстановочности). Выражения (формулы), содержащие предикат Р., могут содержать переменные, или параметры. Если такая формула является истинной при всех значениях переменных (параметров), то отношение Р называют тождеством. Если же она является истинной лишь при некоторых значениях, то ее называют уравнением. Отношение Р обладает свойствами симметричности, транзитивности и рефлексивности.
РАВНОЗНАЧНОСТЬ (равносильность, эквивалентность)- отношение между высказываниями или формулами, когда они принимают одни и те же истинностные значения. Напр., при любых значениях элементарных высказываний формулы (A v B) и (B v A), (A v (A & В)) и A принимают одни и те же значения, т. е. если одна из них истинна, то и другая истинна, если одна из них ложна, то и другая также ложна. Если два высказывания A и В равнозначны, то формулы А -> В и B -> А будут тождественно истинными.
РАВНООБЪЕМНОСТЬ- отношение между понятиями, объемы которых совпадают. Напр., понятия «луна» и «естественный спутник Земли» совпадают по своему объему, в который входит только один предмет; понятия «человек» и «разумное существо, владеющее членораздельной речью» равны по своему объему, т. к. обозначают один и тот же класс — людей.
РАЗДЕЛИТЕЛЬНОЕ СУЖДЕНИЕ- дизъюнктивное (от лат. disjunctio — разобщаю) сложное суждение, образованное из двух или большего числа суждений с помощью логической связки «или». Общая форма Р. с. имеет вид А1 v A2 v, ..., v An, где Аn — суждение (член дизъюнкции, альтернатива), a v — знак дизъюнкции. Существуют два вида Р. с.: строго разделительные и нестрого разделительные. В строго разделительных суждениях связка «или», «либо» употребляется в строго разделительном смысле (см.: Дизъюнкция), т. е. когда члены дизъюнкции (альтернативы) в двучленном суждении A1 v A2 несовместимы (одно из них является истинным, а другое — ложным). Таково суждение: «Этот человек является виновным (A1) либо этот человек не является виновным (А2)». Естественно, что данный человек не может быть одновременно виновным и невиновным, имеет место лишь одна из альтернатив. В нестрого разделительных суждениях (см.: Дизъюнкция) альтернативы не являются несовместимыми. Таково суждение «Этот ученик является способным или он является прилежным». В этом суждении не исключается, что ученик может быть одновременно способным и прилежным.
Р. с. в обычном языке формулируются чаще всего в сокращенной форме и имеют, напр., вид: «S есть Р1 или P2 или «Р1 или p2 принадлежит S». Так, суждение «Данный треугольник прямоугольный или непрямоугольный» означает Р. с. «Данный треугольник прямоугольный или данный треугольник непрямоугольный» Связка «либо» вместо связки «или» используется обычно в строго разделительных суждениях.
РАЗДЕЛИТЕЛЬНО-КАТЕГОРИЧЕСКОЕ УМОЗАКЛЮЧЕНИЕ– умозаключение, в котором одна из посылок — разделительное суждение, а другая — категорическое. Р.-к. у. имеет два модуса: 1) модус утверждающе-отрицающий; 2) модус отрицающе-утверждающий. Простейшая форма модуса (1) имеет вид: S есть Р1 или p2 (первая посылка); S есть Р1 (вторая посылка); S не есть p2 (заключение). Такую форму имеет, напр., следующее умозаключение: «Жидкие коллоидные системы бывают эмульсиями либо золями. Данная жидкая коллоидная система является эмульсией. Данная жидкая коллоидная система не является золем». В таком умозаключении для обеспечения его правильности в разделительной посылке союз «или» («либо») должен употребляться в строго разделительном смысле (см.: Дизъюнкция).
Простейшая форма модуса (2) имеет вид: S есть Р1 или p2, S не есть р1; следовательно, S есть Р2. Пример:
Организмы бывают одноклеточными или многоклеточными.
Данный организм не является одноклеточным.
Данный организм является многоклеточным.
В таком умозаключении для обеспечения его правильности в первой посылке должны быть перечислены все члены дизъюнкции (альтернативы).
РАЦИОНАЛЬНОСТЬ (от лат. ratio - разум)- относящееся к разуму, обоснованность разумом, доступное разумному пониманию, в противоположность иррациональности как чему-то неразумному, недоступному разумному пониманию.
В методологии научного познания Р. понимается двояко. Чаще всего Р. истолковывается как соответствие законам разума — законам логики, методологическим нормам и правилам. То, что соответствует логико-методологическим стандартам, — Р., то, что нарушает эти стандарты, — нерационально или даже иррационально. Иногда под Р. понимают целесообразность. То, что способствует достижению цели, — Р., то, что этому препятствует, — нерациональность.
СВОЙСТВО— характеристика, присущая вещам и явлениям, позволяющая отличать или отождествлять их. Каждому предмету присуще бесчисленное количество свойств, которые делятся на существенные и несущественные, необходимые и случайные, общие и специфические и т. д.
В логике С. называют то, что обозначается одноместным предикатом, напр.: «... есть человек», «... есть зеленый» и т. п. При постановке на пустое место имени к.-л. объекта мы получаем истинное или ложное высказывание: «Сократ есть человек», «Снег зеленый».
СВЯЗКА— в традиционной логике элемент простого суждения, соединяющий субъект и предикат. В повседневном языке С. обычно выражается словами «есть», «суть», «является» и т. п., напр.: «Узбеки являются жителями Средней Азии». В обыденной речи С. часто опускается и приведенное выше предложение обычно выглядит так: «Узбеки живут в Средней Азии». Однако даже если С. не выражена каким-то специальным словом, она обязательно присутствуют в суждении. Напр., два понятия «город» и «населенный пункт» образуют суждение только после того, как их соединит С. «Город есть неселенный пункт». Поэтому схематическое представление простого суждения включает в себя три элемента — субъект, предикат и связку: «5 есть Р». С. может быть утвердительной или отрицательной («есть» или «не есть»). Именно этим определяется качество простого суждения.
В символической логике пропозициональными связками называют логические союзы (операторы), с помощью которых из простых высказываний получают сложные высказывания. К ним обычно относят отрицание, конъюнкцию, дизъюнкцию, импликацию и т. п. Условия истинности сложных высказываний, содержащих пропозициональные связки, формулируются посредством таблиц истинности.
СЕМИОТИКА- общая теория знаковых систем, к числу которых относятся как естественные языки, так и специальные языки конкретных наук, искусственные языки, сигнальные системы и т. п.
СИЛЛОГИЗМ (от греч. sillogismos) категорический- дедуктивное умозаключение, в котором из двух суждений, имеющих субъектно-предикатную форму («Все S суть Р», «Ни одно S не есть Р», «Некоторые 5 суть Р», «Некоторые 5 не есть Р»), следует новое суждение (заключение), имеющее также субъектно-предикатную форму (см.: Суждение). Примером С. может быть:
Все жидкости упруги. Ртуть - жидкость. | (1) |
Ртуть упруга. |
В этом С. посылки стоят над чертой, а заключение - под чертой. Черта, отделяющая посылки от заключения, означает слово «следовательно». Слова и словосочетания, выражающие понятия, фигурирующие в С., называют терминами С. В каждом С. имеется три термина: меньший, больший и средний. Термин, соответствующий субъекту заключения, носит название меньшего термина (в примере (1) таким термином будет «ртуть») и обозначается знаком S. Термин, соответствующий предикату заключения, носит название большего термина (в примере (1) таким термином будет «упруга») и обозначается знаком Р. Термин, который присутствует в посылках, но отсутствует в заключении, носит название среднего термина (в примере (1) таким термином будет «жидкость») и обозначается знаком М. Логическую форму С. (1) можно представить в виде:
Все М суть Р.
Все S суть М.
Все S суть Р.
С., таким образом, представляет собой дедуктивное умозаключение, в котором на основании установления отношений меньшего и большего терминов к среднему термину в посылках устанавливается отношение между меньшим и большим терминами в заключении. Та посылка, в которую входит больший термин, носит название большей посылки (в примере (1) — «Все жидкости упруги»). Та посылка, в которую входит меньший термин, носит название меньшей посылки. Для иллюстрации того, следует ли заключение из посылки с логической необходимостью, используются Эйлера круги.
Эту схему можно интерпретировать так: если все М (жидкости) входят в объем Р (упругих тел) и если все S (ртуть) входят в объем М (жидкостей), то с необходимостью ртуть (S) войдет в объем упругих тел (Р), что и фиксируется в заключении: «Всякая ртуть упруга». По отношению к С. формулируется ряд правил. Напр.: из двух посылок, представляющих собой отрицательные суждения, нельзя сделать никакого заключения; если одна посылка — отрицательное суждение, то заключение должно быть отрицательным суждением; из двух посылок, представляющих собой частные суждения, нельзя сделать заключения и т. п. Наиболее часто встречающиеся ошибки в С. можно исключать, опираясь на правила, формулируемые по отношению к фигурам С. С., отличающиеся друг от друга расположением среднего термина в посылках, принадлежат различным фигурам. Средние термины в С. могут располагаться следующим образом: 1) средний термин М может быть субъектом в большей посылке и предикатом в меньшей (1-я фигура); 2) средний термин может быть предикатом в обеих посылках (2-я фигура); 3) средний термин может быть субъектом в обеих посылках (3-я фигура); 4) средний термин может быть предикатом в большей посылке и субъектом в меньшей (4-я фигура).
СИМВОЛИКА ЛОГИЧЕСКАЯ
- система знаков (символов), используемая в логике для обозначения термов, предикатов, высказываний, логических функций, отношений между высказываниями. В разных логических системах могут использоваться различные системы обозначений, поэтому ниже мы приводим лишь наиболее употребительные символы из числа используемых в литературе по логике:
а, b, с, ... | - начальные буквы латинского алфавита, обычно используются для обозначения индивидуальных константных выражений, термов; | ||
A, В, С, ... | — прописные начальные буквы латинского алфавита, обычно используются для обозначения конкретных высказываний; | ||
х, у, z, ... | — буквы, стоящие в конце латинского алфавита, обычно используются для обозначения индивидных переменных; | ||
X, Y, Z, ... | — прописные буквы, стоящие в конце латинского алфавита, обычно используются для обозначения переменных высказываний или пропозициональных переменных; для той же цели часто используют маленькие буквы середины латинского алфавита: р, q, r, ...; | ||
~ ; ù | - знаки, служащие для обозначения отрицания; читаются: «не», «неверно что»; | ||
; Ù ; & | - знаки для обозначения конъюнкции — логической связки и высказывания, содержащего такую связку в качестве главного знака; читаются: «и»; | ||
Ú | - знак для обозначения неисключающей дизъюнкции — логической связки и высказывания, содержащего такую связку в качестве главного знака; читается: «или»; | ||
- знак для обозначения строгой, или исключающей, дизъюнкции; читается: «либо, либо»; | |||
®; É | — знаки для обозначения импликации — логической связки и высказывания, содержащего такую связку в качестве главного знака; читаются: «если, то»; | ||
º ; « | - знаки для обозначения эквивалентности высказываний; читаются: «если и только если»; | ||
- знак, обозначающий выводимость одного высказывания из другого, из множества высказываний; читается: «выводимо» (если высказывание А выводимо из пустого множества посылок, что записывается как « A», то знак « » читается: «доказуемо»); | |||
T ; t F ; f | — истина (от англ. true — истина); - ложь (от англ. false - ложь); | ||
" | — квантор общности; читается «для всякого», «всем»; | ||
$ | — квантор существования; читается: «существует», «имеется по крайней мере один»; | ||
L, N, | — знаки для обозначения модального оператора необходимости; читаются: «необходимо, что»; | ||
М, à | — знаки для обозначения модального оператора возможности; читаются: «возможно, что». | ||
Наряду с перечисленными в многозначных, временных, деонтических и других системах логики используются свои специфические символы, однако каждый раз разъясняется, что именно тот или иной символ обозначает и как он читается (см.: Знак логический).
СИМВОЛИЧЕСКАЯ ЛОГИКА- одно из названий современного этапа в развитии формальной логики.
Символы применял в ряде случаев еще Аристотель (384 — 322 до н. э.), а затем и все последующие ученые-логики. Однако в современной С. л. был сделан качественно новый шаг в использовании символики. Стали использовать языки, содержащие только специальные символы и не включающие слова обычного разговорного языка.
СИНТАКСИС (греч. syntaxis — построение, порядок)— раздел семиотики, исследующий структурные свойства систем знаков, правила их образования и преобразования, отвлекаясь от их интерпретации. Синтаксисом формализованного языка называют систему правил построения выражений этого языка и проверки того, являются ли эти выражения правильно построенными формулами, аксиомами, теоремами, выводами или доказательствами.
СЛОЖНОЕ ВЫСКАЗЫВАНИЕ- высказывание, полученное с помощью логических связок из простых высказываний. Наиболее употребительны С. в., образованные с помощью слов: «и», «или», «если, то», «если и только если», «не». Вместо этих слов в логике используются символы: &, v, ->, º, ~. С. в. А& В называется конъюнкцией («А и В»), A v В - дизъюнкцией («А или В»), А -> В — импликацией («Если A, то В»), А = В — эквивалентностью («А, если и только если В»), ~ А — отрицанием («Неверно, что A», или «не-A»).
Установление смысла и способа употребления логических связок, позволяющих образовывать С. в., является задачей наиболее фундаментальной и вместе с тем самой простой части логики — исчисления высказываний.
СМЫСЛ— в повседневной речи синоним значения. В логической семантике общее значение языковых выражений расщепляют на две части: предметное значение и С. Предметным значением, денотатом, объемом, экстенсионалом и т. п. некоторого выражения называют тот предмет или класс предметов, которые обозначаются данным выражением. Вместе с тем каждое выражение несет в себе некоторое мысленное содержание, которое и называют С. Понять некоторое выражение значит усвоить его С. Если С. усвоен, то мы знаем, к каким объектам относится данное выражение, следовательно, С. выражения задает его денотат. Два выражения могут иметь одно и то же предметное значение, но различаться по С. Напр., выражения «самый большой город в России» и «город, в котором родился А. С. Пушкин» обозначают один и тот же объект — город Москву, однако обладают разными смыслами. Значением предложения обычно считают его истинностное значение — истину или ложь, С. предложения — выражаемую им мысль. Т. о., все истинные предложения имеют одно и то же значение и различаются только своим С.; то же самое относится к ложным предложениям. Анализом проблем, встающих в связи с попытками точно определить понятие С. для различных типов языковых выражений, занимается специальный раздел логической семантики — теория С. (см.: Имя, Значение, Семантика логическая).
СОВМЕСТИМОСТЬ— вид отношения между понятиями и суждениями. Два понятия называются совместимыми, если их объемы совпадают полностью или частично, т. е. имеют хотя бы один общий элемент. Напр., понятия «политик» и «спортсмен» частично совпадают по своему объему: имеются люди, которые одновременно являются и политиками, и спортсменами, т. е. включаются в объем и первого, и второго понятия, следовательно, эти понятия совместимы. Понятия «первоклассник» и «политик» не имеют общих элементов в своем объеме, т. е. нет ни одного человека, который одновременно является первоклассником и политиком, следовательно, они несовместимы. Совместимые понятия могут быть: равнообъемными, подчиненными и подчиняющими, перекрещивающимися.
Совместимыми называют такие суждения, которые могут быть вместе истинными, т. е. истинность одного не исключает истинности другого. Напр., суждения «Некоторые люди — блондины» и «Некоторые люди — не блондины» оба истинны, следовательно, они совместимы. В традиционной логике совместимыми считаются общеутвердительное и частноутвердительное, общеутвердительное и частноотрицательное, частно-утвердительное и частноотрицательное суждения. В математической логике совместимыми называют предложения, которые вместе истинны хотя бы при одном наборе значений переменных. Напр., предложения А & В и А -> В совместимы, так как они одновременно истинны в том случае, когда А истинно и В истинно.
СОРИТ (от греч. soros - куча)- цепь сокращенных силлогизмов, в которых опущена или большая, или меньшая посылка. Различают два вида С.: 1) С., в котором начиная со второго силлогизма в цепи силлогизмов пропускается меньшая посылка; 2) С., в котором начиная со второго силлогизма в цепи силлогизмов пропускается большая посылка.
СОФИЗМ— рассуждение, кажущееся правильным, но содержащее скрытую логическую ошибку и служащее для придания видимости истинности ложному утверждению. С. является особым приемом интеллектуального мошенничества, попыткой выдать ложь за истину и тем самым ввести в заблуждение. Отсюда «софист» в одиозном значении — это человек, готовый с помощью любых, в том числе недозволенных, приемов отстаивать свои убеждения, не считаясь с тем, истинны они на самом деле или нет.
Обычно С. обосновывает какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Примером может служить ставший знаменитым еще в древности С. «Рогатый»: «Что ты не терял, то имеешь; рога ты не терял; значит, у тебя рога».
СПОР- столкновение мнений или позиций, в ходе которого стороны приводят аргументы в поддержку своих убеждений и критикуют несовместимые с последними представления другой стороны. С. является частным случаем аргументации, ее наиболее острой и напряженной формой. С. — важное средство прояснения и разрешения вопросов, вызывающих разногласия, лучшего понимания того, что не является в достаточной мере ясным и не нашло еще убедительного обоснования. Если даже участники С. не приходят в итоге к согласию, в ходе С. они лучше уясняют как позиции другой стороны, так и свои собственные. Искусство ведения С. наз. эристикой.
СУЖДЕНИЕ— мысль, выражаемая повествовательным предложением и являющаяся истинной или ложной. Термин «С.» широко использовался логикой традиционной. В современной логике обычно пользуются термином «высказывание», обозначающим грамматически правильное предложение, взятое вместе с выражаемым им смыслом (см.: Высказывание, Высказывание дескриптивное, Оценочное высказывание).
СХОДСТВО— наличие хотя бы одного общего признака у изучаемых предметов. Отношение сходства двух предметов в достаточно определенных признаках обладает свойствами симметричности (см.: Отношение симметричное), транзитивности (см.: Отношение транзитивное) и рефлексивности (см.: Отношение рефлексивное). С. есть отношение, родственное отношению равенства.
ТАБЛИЦА ИСТИННОСТИ- таблица, с помощью которой устанавливается истинностное значение сложного высказывания при данных значениях входящих в него простых высказываний. В классической математической логике предполагается, что каждое простое (не содержащее логических связок) высказывание является либо истинным, либо ложным, но не тем и другим одновременно.
ТАВТОЛОГИЯ— в обычном языке: повторение того, что уже было сказано. Напр.: «Жизнь есть жизнь». «Не повезет, так не повезет». Т. бессодержательна и пуста, она не несет никакой информации, и от нее стремятся избавиться как от ненужного балласта, загромождающего речь и затрудняющего общение.
ТЕЗИС- один из элементов доказательства, положение, истинность которого обосновывается в доказательстве. Т. должен удовлетворять следующим правилам:
1. Т. должен быть сформулирован ясно и точно. Соблюдение этого правила предостерегает от неопределенности и двусмысленности при доказательстве того или иного положения. Иногда человек много говорит и как будто что-то доказывает, но что именно он доказывает, остается неясным вследствие неопределенности его Т. Иногда
двусмысленность Т. ведет к бесплодным спорам, возникающим по той причине, что стороны по-разному понимают доказываемое положение.
2. Т. должен оставаться одним и тем же на протяжении всего доказательства. Нарушение этого правила ведет к ошибке, называемой подменой тезиса.
ТЕОРИЯ (от греч. theoria — наблюдение, рассмотрение, исследование)
— наиболее развитая форма организации научного знания, дающая целостное представление о закономерностях и существенных связях определенной области действительности.
ТЕРМИН (от лат. terminus — граница, предел, конец ч.-л.)— 1) в самом широком смысле - слово или словосочетание естественного языка, обозначающее предмет (реальный или абстрактный). В связи с таким пониманием Т. постоянно обсуждается вопрос о значении, смысле Т., употребляемого в том или ином контексте, т. к. обычный язык многозначен; 2) Т. в науке — слово или словосочетание, используемое для обозначения предметов в пределах той или иной науки, научной теории. В этом случае Т. отличаются однозначностью, к их введению в науку предъявляются особые требования. В логике Т. - слово, имя для предметов универсума (см.: Универсум рассуждения, Терм), для обозначения субъекта и предиката суждения, а также для обозначения элементов посылок силлогизма.
ТЕРМИН ТЕОРЕТИЧЕСКИЙ- термин, обозначающий некоторый абстрактный или идеальный объект, существенное свойство или связь объектов, недоступные непосредственному наблюдению. Примерами Т. т. являются материальная точка, абсолютно твердое тело, инерциальная система, стоимость, сила и т. п. Различие между Т. т. и эмпирическими терминами весьма неопределенно и часто зависит от способа введения термина в язык науки. Напр., если термин «температура» вводится на базе молекулярно-кинетической теории и определяется как мера кинетической энергии молекул тела, то он будет Т. т. Однако термин «температура» может вводиться в язык как обобщение некоторых измерительных процедур и истолковываться как мера нагретости тела, фиксируемая измерительным инструментом. В последнем случае его можно отнести к эмпирическим терминам.
ТЕРМИН ЭМПИРИЧЕСКИЙ— термин эмпирического языка, обозначающий чувственно воспринимаемые, наблюдаемые, измеряемые объекты и их свойства.. Вторые имеют гораздо больше шансов оказаться ложными.
ТОЖДЕСТВА ЗАКОН— логический закон, согласно которому всякое высказывание влечет (имплицирует) само себя. Внешне это самый простой из логических законов. Его можно передать так: если высказывание истинно, то оно истинно. Напр.: «Если трава зеленая, то она зеленая», «Если трава черная, то она черная».
Т. з. выражает идею, что каждое высказывание является необходимым и достаточным условием своей собственной истинности.
ТОЖДЕСТВО- отношение между предметами (реальными или абстрактными), которое позволяет говорить о них как о неотличимых друг от друга, в какой-то совокупности характеристик (напр., свойств).