Методы анализа тенденций рядов динамики

Одной из важнейших задач статистики является определение в рядах динамики общей тенденции развития явления. На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.

Основная тенденция (тренд) – изменение, определяющее общее направление развития, это систематическая составляющая долговременного действия.

Задача – выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. Методы выявления тренда:

1) Метод укрупнения интервалов основан на укрупнении периодов времени, к которым относятся уровни ряда динамики (одновременно уменьшается количество интервалов). Средняя, исчисленная по укрупненным интервалам, позволяет выявить направление и характер (ускорение или замедление роста) основной тенденции развития, в то время как слишком малые интервалы между наблюдениями приводят к появлению ненужных деталей в динамике процесса, засоряющих общую тенденцию.

Месяц Объем выпуска, млн.руб. Месяц Объем выпуска, млн.руб.
Январь 5,1 Июль 5,6
Февраль 5,4 Август 5,9
Март 5,2 Сентябрь 6,1
Апрель 5,3 Октябрь 6,0
Май 5,6 Ноябрь 5,9
Июнь 5,8 Декабрь 6,2

Различные направления изменений уровней ряда по отдельным месяцам затрудняют выводы об основной тенденции производства. Если соответствующие месячные уровни объединить в квартальные и вычислить среднемесячный выпуск продукции по кварталам, т.е. укрупнить интервалы, то решение задачи упрощается.

Квартал Объем производства, млн.руб.
в квартал в среднем в месяц
15,7 5,23
16,7 5,57
17,6 5,87
18,1 6,03

После укрупнения интервалов основная тенденция роста производства стала очевидной: 5,23<5,57<5,87<6,03 млн.руб.

2) Метод скользящей среднейзаключается в том, что исчисляется средней уровень из определенного числа (обычно нечетного) первых по счету уровней ряда, затем – из такого же числа уровней, но начиная со второго по счету, далее – начиная с третьего и т.д. Таким образом, средняя как бы “скользит” по ряду динамики, передвигаясь на один срок.

Недостатком сглаживания ряда является укорачивание сглаженного ряда по сравнению с фактическим, а, следовательно, потеря информации.

Год Урожайность, ц/га Скользящая средняя
трехлетняя пятилетняя
15,4
14,0 15,7 = 15,4+14,0+ +17,6)/3
17,6 15,7 = 14,0+17,6+ +15,4)/3 14,7
15,4 14,6 15,1
10,9 14,6 15,3
17,5 14,5 15,5
15,0 17,0 15,2
18,5 15,9 16,0
14,2 15,9
14,9
Итого 153,4  

 

Сглаженный ряд урожайности по трехлетиям короче фактического на один член ряда в начале и в конце, по пятилетиям – на два члена в начале и в конце ряда. Он меньше, чем фактический, подвержен колебаниям из-за случайных причин, и четче выражает основную тенденцию роста урожайности за изучаемый период, связанную с действием долговременно существующих причин и условий развития.

Укрупнение интервалов и метод скользящей средней дают возможность определить лишь общую тенденцию развития явления, более или менее освобожденную от случайных или волнообразных колебаний. Получить обобщенную статистическую модель тренда посредством этих методов нельзя.

 

Рис. 8.2. Эмпирические и сглаженные уровни ряда динамики

3) Аналитическое выравнивание ряда динамики используется для того, чтобы дать количественную модель, выражающую основную тенденцию изменения уровней ряда динамики во времени.

Общая тенденция развития рассчитывается как функция времени:

ŷt=f(t), (6.16)

где ŷt – уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени t.

Определение теоретических (расчетных) уровней ŷt производится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимирует) основную тенденцию ряда динамики.

Простейшими моделями, выражающими тенденцию развития, являются (где a0, a1 – параметры уравнения; t – время):

Линейная функция (прямая) ŷt=a0 + a1·t. (6.17)

Показательная функция . (6.18)

Степенная функция(парабола) ŷt=a0 + a1·t + a2·t2. (6.19)

Расчет параметров функции обычно производится методом наименьших квадратов.Выравнивание ряда динамики заключается в замене фактических уровней yi плавно изменяющимися уровнями ŷt, наилучшим образом аппроксимирующими статистические данные.

Выравнивание по прямой используется в тех случаях, когда абсолютные приросты практически постоянны, т.е. когда уровни изменяются в арифметической прогрессии.

Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометрической прогрессии, т.е. когда цепные коэффициенты роста практически постоянны.

Выравнивание ряда динамики по прямойŷt=a0 + a1·t. Параметры a0, a1 согласно МНК находятся решением следующей системы нормальных уравнений:

(6.20)

где yфактические (эмпирические) уровни ряда;

tвремя (порядковый номер периода или момента времени).

S t = 0, так что система нормальных уравнений (8.20) принимает вид:

(6.21)

Отсюда можно выразить коэффициенты регрессии:

; (6.22)

. (8.23)

Если расчеты выполнены правильно, то S y = S ŷt.

Пример

Для выравнивания ряда из примера 8.3 используем линейную трендовую модель – уравнение прямой ŷt=a0 + a1·t. n = 10. Расчет уравнения регрессии выполним в табличной форме.

Таким образом,

S y =153,4; S y·t = 6,8; S t2 = 330.

Вычислим параметры a0, a1по формулам (8.22, 8.23):

= 15,34; = 0,021.

Расчет уравнения регрессии

Год y t t2 y·t ŷt yi – ŷt (yi– ŷt)2
15,4 -9 -138,6 15,15 0,25 0,0625
14,0 -7 -98,0 15,19 -1,19 1,4161
17,6 -5 -88,0 15,23 2,37 5,6169
15,4 -3 -46,2 15,28 0,12 0,0144
10,9 -1 -10,9 15,32 -4,42 19,5364
17,5 17,5 15,36 2,14 4,5796
15,0 45,0 15,40 -0,40 0,0160
18,5 92,5 15,45 3,05 9,3025
14,2 99,4 15,49 -1,29 1,6641
14,9 134,1 15,53 -0,63 0,3969
Итого 153,4 330 6,8 153,4 42,6050

 

Уравнение прямой будет иметь вид:

ŷt = 15,34+0,021·t.

Подставляя в данное уравнение последовательно значения, находим выравненные уровни ŷt (гр. 6 табл. 7.3).

Проверим расчеты:

S y = S ŷt = 153,4.

Следовательно, значения уровней выравненного ряда найдены верно.

Полученное уравнение показывает, что, несмотря на значительные колебания в отдельные годы, наблюдается тенденция увеличения урожайности: с 1991 по 2000 г. урожайность зерновых культур в среднем возрастала на 0,021 ц/га в год.

Тенденция роста урожайности зерновых культур в изучаемом периоде отчетливо проявляется в результате построения выравненной прямой.

Сезонные колебания

Уровни ряда динамики формируются под влиянием различных взаимодействующих факторов, одни из которых определяют тенденцию развития, а другие –колеблемость (вариацию)

Колебания уровней ряда носят различный характер. Наряду с трендом выделяют циклические (долгопериодические), сезонные (обнаруживаемые в рядах, где данные приведены за кварталы или месяцы) и случайные колебания.

 
 


– линия тренда

– средний уровень

 

 

уi – фактические уровни

 

 

Колебания фактических уровней yi относительно среднего уровня и линии тренда

Периодические колебания являются результатом влияния природно-климатических условий, общих экономических факторов, а также многочисленных и разнообразных факторов, которые часто являются регулируемыми.

В широком понимании к сезонным относят все явления, которые обнаруживают в своем развитии четко выраженную закономерность периодических изменений, т.е. более или менее устойчиво повторяющиеся колебания уровней.

Динамический ряд в этом случае называют сезонным рядом динамики.

Метод изучения и измерения сезонности заключается в построении специальных показателей, которые называются индексами сезонности.

Индексами сезонности являются процентные отношения фактических внутригрупповых уровней к теоретическим уровням, выступающим в качестве базы сравнения. Порядок определения индекс сезонности:

1) Для каждого месяца рассчитывается средняя величина уровня

2) Затем вычисляется среднемесячный уровень для всего ряда

3) Определяется показатель сезонной волны – индекс сезонности Is:

, (6.24)

где – средний уровень для каждого месяца;

– среднемесячный уровень для всего ряда.

Когда уровень проявляет тенденцию к росту или к снижению, то отклонения от постоянного среднего уровня могут исказить сезонные колебания.

 

Пример

Месяц Объем пассажирских авиаперевозок Is, %
Средний
94,0 89,3 92,6 92,0 91,1
98,0 93,1 96,6 95,9 95,0
107,6 102,2 106,2 105,3 104,2
112,8 107,1 111,4 110,4 109,3
121,2 115,2 119,8 118,7 117,6
112,0 106,4 110,6 109,7 108,6
110,0 104,5 108,6 107,7 106,6
102,5 97,4 101,1 100,3 99,3
97,0 92,2 95,6 94,9 94,0
94,0 89,3 92,6 92,0 91,1
96,4 91,6 95,0 94,3 93,4
92,5 87,9 91,1 90,5 89,6
Итого 1237,9 1176,0 1221,1 1211,7 1199,7
В среднем 103,2 98,0 101,8 101,0 100,0

Средний индекс сезонности для 12 месяцев должен быть равен 100%, тогда сумма индексов должна составлять 1200%. У нас – 1199,7% (погрешность – следствие округлений). Значит, расчеты верны.

Выводы:

1) объем пассажирских авиаперевозок характеризуется ярко выраженной сезонностью;

2) объем пассажирских авиаперевозок по отдельным месяцам года значительно отклоняется от среднемесячного;

3) наибольший объем характерен для мая, наименьший – для декабря.

Для наглядного изображения сезонной волны индексы сезонности изображают в виде графика.

Индекс сезонности авиаперевозок пассажиров