ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ И ПЕРЕМЕЩЕНИЙ
Определим упругие деформации стержня предполагая, что изменение его длины при растяжении
, называемое абсолютной продольной деформацией или удлинением, мало по сравнению с его первоначальной длиной
. Тогда относительная продольная деформация будет равна

Учитывая, что согласно закону Гука для одноосного растяжения (сжатия)
,
где Е—;модуль продольной упругости материала стержня, а нормальные напряжения определяются по формуле —
(в нашем случае Nz=P), для абсолютной деформации получаем
| (2) |
Произведение EF принято называть жесткостью поперечного сечения стержня при растяжении (сжатии), так как удлинение обратно пропорционально EF.

Рис.6. Модели продольной и поперечной деформаций
Как показывают эксперименты, при растяжении стержня размеры его поперечного сечения уменьшаются (рис. 6), а при сжатии — увеличиваются. Это явление получило название эффекта Пуассона.
По аналогии с продольной деформацией изменение размеров поперечного сечения
(на рис. 6
) будем называть абсолютной поперечной деформацией, а
— относительной поперечной деформацией. Относительные продольная и поперечная деформации, имеющие противоположные знаки, связаны между собой коэффициентом
, являющимся константой материала и называемым коэффициентом поперечной деформации или коэффициентом Пуассона:
Как известно, для изотропного материала
.
Формула (2) для удлинения стержня
применима только в случае, когда по длине стержня ни жесткость поперечного сечения, ни продольная сила не изменяются (EF=const, Nz =const). Удлинение стержня со ступенчатым изменением EF и Nz (рис. 7) может быть определено как сумма удлинений ступеней, у которых EF и Nz постоянны:

(индекс k у модуля продольной упругости означает, что участки стержня могут быть изготовлены из различных материалов). В случае, когда Nz и EF меняются по длине стержня l непрерывно и их можно считать постоянными лишь в пределах ступеней длиной dz, обобщая формулу эту, получаем

В качестве тестов для практики расчетов определенных интегралов рекомендую воспользоваться системой входных тестов Т-5, указанных в ПРИЛОЖЕНИИ.

Рис.7. Ступенчатый брус
С упругими продольными деформациями стержня при растяжении (сжатии) связаны продольные перемещения его сечений. На рис. 8 приведены три случая определения таких перемещений, откуда видно, что перемещения поперечных сечений численно равны удлинениям заштрихованных частей стержня:
- перемещение свободного торцевого сечения 1—1 при неподвижном другом торцевом сечении (рис. 8, а) численно равно удлинению стержня;
- перемещение промежуточного сечения 2—2 (рис. 8, б) численно равно удлинению части стержня, заключенной между данным сечением и сечением неподвижным;
- взаимное перемещение сечений 3—3 и 4—4 (рис, 8, в) численно равно удлинению части стержня, заключенной между этими сечениями.

Рис.8. Модели перемещений
НАПРЯЖЕННОЕ СОСТОЯНИЕ ПРИ РАСТЯЖЕНИИ (СЖАТИИ)
Напряженное состояние при растяжении стержня является одноосным (рис. 9, а). Поскольку на поперечных и продольных площадках касательные напряжения не возникают, то эти площадки являются главными. Причем в случае растяжения
, а в случае сжатия
.

Рис.9. Напряженное состояние: а ) исходный элемент, б ) компоненты напряжений
Напряжения на площадках, наклоненных к оси стержня под углом
, определяются по формулам для упрощенного плоского напряженного состояния:

Площадки с экстремальными касательными напряжениями
(рис. 9, б), как известно, наклонены по отношению к исходным под углами
(следует и из формулы для
) и равны
.
Именно с действием экстремальных
связывается появление на боковой поверхности образца из малоуглеродистой стали, испытываемого на растяжение, линий скольжения, ориентированных под углом
к оси образца. На площадках с экстремальными
действуют и нормальные напряжения, равные
.
Лекция № 13. Расчет статически неопределимых систем по допускаемым нагрузкам.