ФУНКЦИИ РЕТИКУЛЯРНОЙ ФОРМАЦИИ
Ретикулярная формация (РФ) представляет собой скопления нейронов, различных по функции и размерам, связанных множеством нервных волокон, проходящих в разных направлениях и об--разующих сеть на всем протяжении ствола мозга, что и определяет ее название. Нейроны либо расположены диффузно, либо образуют ядра. Нейроны РФ имеют длинные маловетвящиеся дендриты и хорошо ветвящиеся аксоны, которые часто образуют Т-образное ветвление: одна из ветвей аксона имеет нисходящее, а вторая -восходящее направление.
Нейроны РФ полимодальны - для них характерна полисенсорная конвергенция, они принимают коллатерали от нескольких сенсорных путей, идущих от разных рецепторов; имеют тоническую активность, в покое равную 5-10 имп/с; обладают высокой чувствительностью к некоторым веществам крови (например, адреналину, С02) и лекарствам (барбитуратам, аминазину и др.); более возбудимы по сравнению с другими нейронами; обладают высокой лабильностью - до 500-1000 имп/с.
Нейроны и ядра РФ входят в состав центров, регулирующих функции внутренних органов (кровообращения, дыхания, пищеварения), регулирующих тонус скелетной мускулатуры (см. раздел 7.3), активность коры большого мозга. Обширны связи РФ с другими отделами ЦНС и рефлексогенными зонами - она получает импульсацию от различных рецепторов организма и отделов ЦНС и в свою очередь посылает импульсы во все отделы мозга. При этом выделяют восходящие и нисходящие влияния РФ.
Нисходящие влияния РФ на моторные спинальные центры. От ретикулярного гигантоклеточного ядра продолговатого мозга идет частично перекрещенный латеральный ретикулоспи-нальный тракт, волокна которого оканчиваются на вставочных нейронах спинного мозга. Через эти интернейроны они возбуждают а- и у-нейроны мышц-сгибателей мускулатуры конечностей и ре-
ципрокно тормозят мышцы-разгибатели. От каудальных и оральных ретикулярных ядер моста идет неперекрещенный медиальный ретикулоспинальный тракт, волокна которого оканчиваются также на интернейронах спинного мозга. Через них осуществляется стимуляция а- и у-нейронов мышц-разгибателей, а через тормозные интернейроны тормозятся мышцы-сгибатели. Активация РФ продолговатого мозга повышает, активация РФ моста уменьшает тонус мышц-разгибателей; на мышцы-сгибатели она оказывает противоположные влияния.
Восходящие влияния РФ на большой мозг преимущественно активирующие. Импульсы ретикулярных нейронов продолговатого мозга (гигантоклеточное, латеральное и вентральное ретикулярные ядра), моста (особенно каудальное ретикулярное ядро) и среднего мозга поступают к неспецифическим ядрам таламуса и после переключения в них проецируются в различные области коры. Кроме таламуса восходящие влияния поступают также в задний гипоталамус, полосатое тело. Тормозное влияние РФ на большой мозг изучено недостаточно. Работами В. Гесса (1929), Дж. Моруц-ци (1941) было показано, что раздражением некоторых точек РФ ствола мозга можно перевести животное из бодрствующего состояния в сонное.
Связи различных отделов ЦНС осуществляются с помощью нервных путей, идущих в различных направлениях и выполняющих разные функции, что и положено в основу их классификации. В частности, в спинном мозге, как и в других отделах ЦНС, выделяют восходящие и нисходящиепути (определяющим фактором этой классификации является направление потока импульсов). Кроме того, в стволе мозга восходящие системы подразделяют на специфические и неспецифические.Восходящие и нисходящие пути спинного мозга рассмотрены в разделе 7.12.
Проводниковая функция ствола мозга выполняется нисходящими и восходящими путями, часть из которых переключается в стволовых центрах, другая часть идет транзиторно (без переключения).
МОЗЖЕЧОК
Мозжечок расположен позади полушарий большого мозга, над продолговатым мозгом и мостом. В совокупности с последним он образует задний мозг. Мозжечок включает в себя более половины всех нейронов ЦНС, хотя составляет 10% массы головного мозга. Это свидетельствует о больших возможностях обработки информации мозжечком.
Выделяют три структуры мозжечка, отражающие эволюцию его функций.
1. Древний мозжечок (архицеребеллум) состоит из клочка и узелка (флоккуло-нодулярная доля) и нижней части червя.
2. Старый мозжечок (палеоцеребеллум) включает в себя верхнюю часть червя и парафлоккулярный отдел.
3. Новый мозжечок (неоцеребеллум), состоящий из двух полушарий.
Двигательные функции мозжечка заключаются в регуляции мышечного тонуса, позы и равновесия, координации выполняемого целенаправленного движения, программировании целенаправленных движений.
1. Мышечный тонус и поза регулируются преимущественно древним мозжечком (флоккуло-нодулярная доля) и частично ста: рым мозжечком, входящими в медиальную червячную зону. Получая и обрабатывая импульсацию от вестибулярных рецепторов, от приорецепторов и рецепторов кожи, от зрительных и слуховых рецепторов, мозжечок способен оценить состояние мышц, положение тела в пространстве и через ядра шатра, используя вестибуло-, ре-тикуло- и руброспинальный тракты, произвести перераспределение мышечного тонуса, изменить позу тела и сохранить равновесие. Нарушение равновесия является наиболее характерным симптомом поражения архицеребеллума.
2. Координация выполняемого движения осуществляется старым и новым мозжечком, входящими в промежуточную (околочервячную) зону. В кору этой части мозжечка поступает импульсация от проприорецепторов, а также импульсация от моторной коры большого мозга, представляющая собой программу произвольного движения. Анализируя информацию о программе движения и о выполнении движения (от проприорецепторов), мозжечок способен через свое промежуточное ядро, имеющее выходы на красное ядро и моторную кору, осуществить координацию позы и выполняемого целенаправленного движения в пространстве, а также исправить направление движения. Нарушение координации движения (атаксия) является наиболее характерным симптомом нарушения функции промежуточной зоны мозжечка.
3. Мозжечок участвует в программировании движений, что осуществляется его полушариями. Кора мозжечка получает импульсацию преимущественно из ассоциативных зон коры большого мозга через ядра моста. Эта информация характеризует замысел движения. В коре нового мозжечка она перерабатывается в программу движения, которая в виде импульсов вновь поступает через таламус в премоторную и моторную кору и из нее через пирамидную
и экстрапирамидную системы - к мышцам. Контроль и коррекция более медленных программированных движений осуществляются мозжечком на основе обратной афферентации преимущественно от проприорецепторов, а также от вестибулярных, зрительных, тактильных рецепторов. Коррекция быстрых движений из-за малого времени их выполнения осуществляется путем изменения их программы в самом мозжечке, т. е. на основе обучения и предшествующего опыта, без сличения с афферентной импульсацией от проприорецепторов о результате действия. К таким движениям относятся многие спортивные упражнения, печатание на пишущей машинке, игра на музыкальных инструментах.
ПРОМЕЖУТОЧНЫЙ МОЗГ
Промежуточный мозг (а1епсерЬа1оп) расположен между средним и конечным мозгом, вокруг III желудочка мозга. Он состоит из таламической области и гипоталамуса. Таламическая область включает в себя таламус, метаталамус (коленчатые тела) и эпиталамус (эпифиз). В литературе по физиологии метаталамус объединяется с таламусом, эпифиз рассматривается в эндокринной системе.
Таламус(1па1агтш5 - зрительный бугор) - это парный ядерный комплекс, занимающий преимущественно дорсальную часть промежуточного мозга. В таламусе выделяют до 40 парных ядер, которые в функциональном отношении можно разделить на следующие три группы: релейные, ассоциативные и неспецифические.
Переключательные ядра таламуса (релейные, специфические) делят на сенсорные и несенсорные.
Сенсорные ядра. Главной функцией этих ядер является переключение потоков афферентной импульсации в сенсорные зоны коры большого мозга. Наряду с этим происходят перекодирование и обработка информации- Главными сенсорными ядрами являются вентральные задние ядра, латеральное и медиальное коленчатые тела.
К несенсорным переключательным ядрам таламуса относятся передние и вентральные ядра. Они переключают в кору несенсорную импульсацию, поступающую в таламус из разных отделов головного мозга.
Ассоциативные ядра таламуса включают ядра подушки (п. риЬЛпаг), медиодорсальное ядро и латеральные ядра. Волокна к этим ядрам приходят не от проводниковых путей анализаторов, а от других ядер таламуса. Эфферентные выходы от этих ядер направляются главным образом в ассоциативные поля коры. В свою
очередь кора мозга посылает волокна к ассоциативным ядрам, регулируя их функцию. Главной функцией этих ядер является интег-ративная функция, которая выражается в объединении деятельности как таламических ядер, так и различных зон ассоциативной коры большого мозга.
Неспецифические ядра составляют эволюционно более древнюю часть таламуса, они содержат преимущественно мелкие, многоотростчатые нейроны и функционально рассматриваются как производное ретикулярной формации ствола мозга. В неспецифические ядра поступает импульсация от других ядер таламуса по трактам, проводящим преимущественно болевую и температурную чувствительность. В неспецифические ядра поступает непосредственно или через ретикулярную формацию также часть импуль-сации по коллатералям от всех специфических сенсорных систем.. Кроме того, в неспецифические ядра поступает импульсация из моторных центров ствола (красное ядро, черное вещество), ядер мозжечка, от базальных ганглиев и гиппокампа, а также от коры мозга, особенно лобных долей. Неспецифические ядра имеют эфферентные выходы на другие таламические ядра, кору больших полушарий как непосредственно, так и через ретикулярные ядра, а также нисходящие пути к другим структурам ствола мозга, т. е. эти ядра, как и другие отделы ретикулярной формации, оказывают восходящие и нисходящие влияния.
Неспецифические ядра таламуса выступают в роли интегрирующего посредника между стволом мозга и мозжечком с одной стороны и новой корой, лимбической системой и базальными ганглиями с другой стороны, объединяя их в единый функциональный комплекс. На кору большого мозга неспецифический таламус оказывает преимущественно модулирующее влияние. Разрушение неспецифических ядер не вызывает грубых расстройств эмоций, восприятия, сна и бодрствования, образования условных рефлексов, а нарушает только тонкую регулировку поведения.
Гипоталамус- это вентральная часть промежуточного мозга, макроскопически он включает в себя преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные тела. В гипоталамусе выделяют до 48 парных ядер, которые подразделяются разными авторами на 3-5 групп.
Гипоталамус - многофункциональная система, обладающая широкими регулирующими и интегрирующими влияниями. Однако важнейшие функции гипоталамуса трудно соотнести с его отдельными ядрами. Как правило, отдельно взятое ядро имеет несколько функций. В связи с этим физиология гипоталамуса рассматривается обычно в аспекте функциональной специфики его различ-
ных областей и зон. Гипоталамус является важнейшим центром интеграции вегетативных функций, регуляции эндокринной системы, теплового баланса организма, цикла «бодрствование - сон» и других биоритмов; велика его роль в организации поведения (пищевого, полового, агрессивно-оборонительного), направленного на реализацию биологических потребностей, в проявлении мотиваций и эмоций.
БАЗАЛЬНЫЕ ГАНГЛИИ
Базальные ганглии расположены в основании больших полушарий и включают три парных образования: бледный шар (раШашп), филогенетически более позднее образование - полосатое тело Ыпагшп) и наиболее молодую часть - ограду (Ыаизгшт). Полосатое тело включает хвостатое ядро (п. саиаааатиз) и скорлупу (рьйаптеп).
Функциональные связи базальных ганглиев. Афферентная импульсация в базальные ганглии поступает преимущественно в полосатое тело и происходит она в основном из трех источников: 1) от всех областей коры непосредственно и через таламус; 2) от черного вещества; 3) от неспецифических интраламинарных ядер таламуса. Среди эфферентных связей базальных ганглиев можно отметить три выхода: 1) от полосатого тела пути идут к бледному шару, от которого начинается самый важный эфферентный тракт базальных ганглиев, идущий в таламус, в его релейные вентральные ядра, от них возбуждающий путь идет в двигательную кору;
2) часть эфферентных волокон из бледного шара и полосатого тела идет к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оливу в мозжечок;
3) от полосатого тела тормозящие пути идут к черному веществу и после переключения - к ядрам таламуса.
Базальные ганглии являются промежуточным звеном (станцией переключения), связывающим ассоциативную и, частично, сенсорную кору с двигательной корой. Рассмотрим функции отдельных структур базальных ганглиев.
Полосатое тело оказывает на бледный шар двоякое действие - возбуждающее и тормозящее с преобладанием последнего. Полосатое тело оказывает тормозящее влияние (медиатор ГАМК) на нейроны черного вещества. В свою очередь нейроны черного вещества оказывают модулирующее влияние (медиатор дофамин) на кортикостриарные каналы связи. Раздражение полосатого тела вызывает синхронизацию электроэнцефалограммы - появле-
ние в ней высокоамплитудных ритмов, характерных для фазы медленного сна. Стимуляция полосатого тела через хронически вживленные электроды вызывает относительно простые двигательные реакции: поворот головы и туловища в сторону, противоположную раздражению, иногда сгибание конечности на противоположной стороне.
Бледный шар оказывает модулирующее влияние на двигательную кору, мозжечок, ретикулярную формацию, красное ядро. При стимуляции бледного шара у животных преобладают элементарные двигательные реакции в виде сокращения мышц конечностей, шеи и лица.
Электрическое раздражение различных зон оградывызывает разнообразные соматические, вегетативные и поведенческие реакции, например, пищевые, ориентировочные и эмоциональные., сокращение мышц туловища, головы, жевательные и глотательные движения и др.
Таким образом, базальные ганглии - это прежде всего центры организации различных видов моторной активности организма, связанной с обучением. Базальные ганглии контролируют такие параметры движения, как сила, амплитуда, скорость и направление.
ЛИМБИЧЕСКАЯ СИСТЕМА
Структуры лимбической системы (НтЬиз - край) расположены в виде кольца на границе новой коры, отделяющей ее от ствола мозга (см. рис. 5.10).
Структурно-функциональная организация. В лимбиче-скую систему включают образования древней коры (обонятельная луковица и бугорок, периамигдалярная и препириформная кора), старой коры (гиппокамп, зубчатая и поясная извилины), подкорковые ядра (миндалина, ядра перегородки), и этот комплекс рассматривается по отношению к гипоталамусу и ретикулярной формации ствола как более высокий уровень интеграции вегетативных функций. Кроме вышеназванных структур в лимбическую систему в настоящее время также включают гипоталамус, ретикулярную формацию среднего мозга.
Афферентные входы в лимбическую систему осуществляются от различных областей головного мозга, а также через гипоталамус от ретикулярной формации ствола, которая считается главным источником ее возбуждения. В лимбическую систему поступают импульсы от обонятельных рецепторов по волокнам обонятельного нерва - корковый отдел обонятельного анализатора. Эфферент-
ные выходы из лимбической системы осуществляются через гипоталамус на нижележащие вегетативные и соматические центры ствола мозга и спинного мозга. Лимбическая система оказывает восходящие возбуждающие влияния на новую кору (преимущественно ассоциативную).
Функции. Лимбическая система после получения информации о внешней и внутренней среде организма, сравнения и обработки этой информации запускает через эфферентные выходы вегетативные и соматические поведенческие реакции, обеспечивающие приспособление организма к внешней среде и сохранение внутренней среды на определенном уровне. В этом состоит наиболее общая функция лимбической системы. Основными частными функциями лимбической системы являются следующие.
/. Регуляция висцеральных функций. В этой связи лимбическую систему иногда называют «висцеральным мозгом». Данная функция осуществляется преимущественно посредством гипоталамуса, который является диэнцефалическим звеном лимбической системы.
2. Формирование эмоций. Ключевой структурой для возникно
вения эмоций является гипоталамус. В структуре эмоций выде
ляют собственно эмоциональные переживания и их вегетативные
и соматические проявления.
Важную роль в возникновении эмоций играют поясная извилина и миндалина. Электрическая стимуляция миндалины у человека вызывает преимущественно отрицательные эмоции - страх, гнев, ярость. Напротив, двустороннее удаление миндалин в эксперименте на обезьянах резко снижает их агрессивность, повышает тревожность, неуверенность в себе. Поясная извилина выполняет роль интегратора различных систем мозга, участвующих в формировании эмоций.
3. Лимбическая система участвует в процессах памяти и
обучения. Особо важную роль играют гиппокампи связанные
с ним задние зоны лобной коры.Их деятельность необходима для
консолидации памяти - перехода кратковременной памяти в дол
говременную.