Основные параметры, характеризующие несущий винт

Назначение и типы воздушных винтов

Назначение воздушного винта состоит в преобразовании крутящего момента, передаваемого от двигателя, в аэродинамическую силу. Образование аэродинамической силы объясняется третьим законом механики. Воздушный винт при своем вращении захватывает и отбрасывает некоторую массу воздуха. Эта масса, сопротивляясь отбрасыванию, толкает винт вместе с летательным аппаратом в сторону, противоположную направлению отбрасывания. Причиной создания аэродинамической силы воздушного винта является реакция отбрасываемой винтом массы воздуха. Воздушные винты самолета служат для создания силы тяги, необходимой для поступательного движения самолета. Несущий винт вертолета служит для создания подъемной силы, необходимой для удержания вертолета в воздухе, и силы тяги, необходимой для поступательного движения вертолета. Как было указано, одним из достоинств вертолета является его способность перемещаться в любом направлении. Направление перемещения вертолет а зависит от того, куда наклонена сила тяги несущего винта — вперед, назад или вбок.

Несущий винт обеспечивает управляемость и устойчивость вертолета на всех режимах. Таким образом, несущий винт одновременно выполняет роль крыла, тянущего винта и основных органов управления. Рулевые винты вертолета служат для уравновешивания реактивного момента и путевого управления вертолетом.

Составляющие тяги несущего винта

Основные параметры, характеризующие несущий винт

К основным параметрам, характеризующим несущий винт вертолета, относятся:

К о л и ч е с т в о л о п а с т е й z. На современных вертолетах применяются трех-, четырех- и пятилопастные винты. Увеличение количества лопастей ухудшает работу несущего винта из-за вредного взаимного влияния лопастей. Уменьшение количества лопастей (меньше трех) приводит к пульсирующему характеру тяги, создаваемой винтом, и повышенным вибрациям вертолета в полете. Диаметр несущего винта D — диаметр окружности, описываемой концами лопастей при вращении. Радиус этой окружности обозначается буквой R и называется радиусом несущего винта. Расстояние от оси вращения несущего винта до рассматриваемого сечения обозначается буквой г (рис. 1.33). Расчеты показывают, что при одной и той же подводимой к винту мощности его тяга увеличивается с увеличением диаметра. Так, например, увеличение диаметра вдвое увеличивает тягу в 1,59 раза, увеличение диаметра- в пять раз увеличивает тягу в 2,92 раза. Однако увеличение диаметра связано с увеличением веса винта, с большой сложностью обеспечения прочности лопастей, с усложнением технологии изготовления лопастей, увеличением длины хвостовой балки и др. Поэтому при разработке вертолета выбирается некоторый оптимальный диаметр.

Площадь, о м е т а е м а я н е с у щ и м в и н т о м F0M, — площадь окружности, описываемой концами лопастей несущего винта при вращении.

Понятие ометаемой площади вводится потому, что эта площадь может рассматриваться как некоторая несущая поверхность, аналогичная крылу самолета ввиду вязкости и инертности воздуха, образующего при протекании через площадь, ометаемую винтом, одну общую струю. У современных вертолетов F0M= 100-:-1000 м2.

Н а г р у з к а на о м е т а е м у ю площадь р есть отношение веса вертолета G к площади, ометаемой винтом при его вращении:

FомР=G/Fом(кг/ м2 ).

Увеличение р приводит к уменьшению максимальной высоты полета и к увеличению скорости снижения на режиме самовращения несущего винта.

У современных вертолетов Р=12-:-45кг/ м2 , или 118-:-440н/ м2

Рис.1.33.Диаметр несущего винта

К о э ф ф и ц и е н т з а п о л н е н и я Q — величина, показывающая, какую часть ометаемой площади состав-

ляет пло щадь в сех л опас тей винт а.

Ф о р м а л о п а с т е й в п л а н е (рис. 1.34). Лопасть несущего винта может иметь

прямоугольную, трапециевидную или смешанную форму в плане. Сужение трапециевидной лопасти не более 2—3. Сужением лопасти называется отношение хорды у комля к концевой хорде.

Смешанная

Рис. 1.34. Форма лопастей в плане

Профиль лопасти — форма ее поперечного сечения. Для лопастей несущих винтов применяются профили, аналогичные профилям крыльев самолетов. Обычно это несимметричные профили с относительной толщиной с = 7-=-14%'. Форма профиля по длине может быть переменной (аэродинамическая крутка лопасти). При выборе, формы профиля стремятся к тому, чтобы он обладал наибольшим аэродинамическим качеством


Угол а т а к и с е ч е н и я л о п а с т и а — угол между хордой профиля и направлением набегающего потока воздуха в данном сечении. Величиной угла атаки определяются значения коэффициентов аэродинамических сил.

Рис. 1.35. Угол установки (шаг) лопасти

У г о л у с т а н о в к и ( ш а г ) л о п а с т и (рис. 1.35). Углом установки Ф называется угол между хордой профиля и плоскостью вращения несущего винта. Угол установки
вертолетных винтов замеряется на расстоянии 0,7 радиуса винта, Эта условность введена благодаря наличию геометрической крутки лопастей, вследствие которой все сечения лопастей имеют разные (уменьшающиеся к концу) углы установки. Необходимость геометрической крутки объясняется следующим. Во-первых, ввиду увеличивающейся к концу лопасти окружной скорости происходит неравномерное распределение индуктивных скоростей, а следовательно, и аэродинамических сил по длине лопасти. Для обеспечения более равномерного распределения нагрузки угол установки к концу лопасти уменьшается. Во-вторых, в поступательном полете из-за роста угла атаки в определенном положении лопастей возникает срыв потока с концов лопастей, наличие геометрической крутки отодвигает концевой срыв в сторону больших скоростей полета. Подробнее этот вопрос будет рассмотрен ниже. Шаг лопасти несущего винта изменяется при повороте ее в осевом шарнире, т.е. вокруг продольной оси.

Конструктивно несущий винт выполнен так, что все его лопасти в осевом шарнире могут одновременно поворачиваться на один и тот же угол или на разные углы.