Многоалфавитная одноконтурная обыкновенная подстановка

Для замены символов используются несколько алфавитов, причем смена алфавитов проводится последовательно и циклически: первый символ заменяется на соответствующий символ первого алфавита, второй - из второго алфавита, и т.д. пока не будут исчерпаны все алфавиты. После этого использование алфавитов повторяется.

Рассмотрим шифрование с помощью таблицы Вижинера - квадратной матрицы с n2 элементами, где n - число символов используемого алфавита. В первой строке матрицы содержится исходный алфавит, каждая следующая строка получается из предыдущей циклическим сдвигом влево на один символ.

Таблица Вижинера для русского алфавита:

А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я

Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А

В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б

Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В

Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г

Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д

Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е

З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж

И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З

Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И

К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й

Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К

М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л

Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М

О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н

П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О

Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П

С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р

Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С

У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т

Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У

Х Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф

Ц Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х

Ч Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц

Ш Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч

Щ Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш

Ь Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ

Ы Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь

Ъ Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы

Э Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ

Ю Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э

Я А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ь Ы Ъ Э Ю

Для шифрования необходимо задать ключ - слово с неповторяющимися символами. Таблицу замены получают следующим образом: строку "Символы шифруемого текста" формируют из первой строки матрицы Вижинера, а строки из раздела "Заменяющие символы" образуются из строк матрицы Вижинера, первые символы которых совпадают с символами ключевого слова.

При шифровании и дешифровании нет необходимости держать в памяти всю матрицу Вижинера, поскольку используя свойства циклического сдвига, можно легко вычислить любую строку матрицы по ее номеру и первой строке.

При шифровании символы из первой строки заменяются символами остальных строк по правилу

a(1,i) -> a(k,i),


где k - номер используемой для шифрования строки.

Используя свойства циклического сдвига влево элементы k-ой строки можно выразить через элементы первой строки

a(1,i+k-1), если i<=n-k+1

a(k,i)=

a(1,i-n+k-1), если i>n-k+1

При дешифровании производится обратная замена

a(k,i) -> a(1,i).

Поэтому необходимо решить следующую задачу: пусть очередной дешифруемый символ в тексте - a(1,j) и для дешифрования используется k-я строка матрицы Вижинера. Необходимо найти в k-ой строке номер элемента, равного a(1,j). Очевидно,

a(k,j-k+1), если j>=k

a(1,j)=

a(k,n-k+j+1), если j<k

Таким образом при дешифровании по k-ой строке матрицы Вижинера символа из зашифрованного текста, значение которого равно a(1,j), проводится обратная подстановка

a(1,j-k+1), если j>=k

a(1,j) ->

a(1,n-k+j+1), если j<k

Стойкость метода равна стойкости метода подстановки, умноженной на количество используемых при шифровании алфавитов, т.е. на длину ключевого слова и равна 20*L, где L - длина ключевого слова.

С целью повышения стойкости шифрования предлагаются следующие усовершенствования таблицы Вижинера:

1. Во всех (кроме первой) строках таблицы буквы располагаются в произвольном порядке.

2. В качестве ключа используются случайные последовательности чисел, которые задают номера используемых строк матрицы Вижинера для шифрования.