Двигатель параллельного возбуждения
Глава 29
Основные понятия
Коллекторные машины обладают свойством обратимости, т. е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбуждения и в обмотке якоря машины появятся токи. Взаимодействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который является не тормозящим, как это имело место в генераторе, а вращающим.
Под действием электромагнитного момента якоря машина начнет вращаться, т. е. машина будет работать в режиме двигателя, потребляя из сети электрическую энергию и преобразуя ее в механическую. В процессе работы двигателя его якорь вращается в магнитном поле. В обмотке якоря индуцируется ЭДС ,направление которой можно определить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока , и поэтому ее называют противоэлектродвижущей силой (противо-ЭДС) якоря (рис. 29.1).
Рис. 29.1. Направление противо-ЭДС в обмотке якоря двигателя
Для двигателя, работающего с постоянной частотой вращения,
. (29.1)
Из (29.1) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмотки якоря и падением напряжения в цепи якоря. На основании (29.1) ток якоря
. (29.2)
Умножив обе части уравнения (29.1) на ток якоря , получим уравнение мощности для цепи якоря:
, (29.3)
где — мощность в цепи обмотки якоря; — мощность электрических потерь в цепи якоря.
Для выяснения сущности выражения проделаем следующее преобразование:
,
или
.
Но, согласно (25.24),
тогда
, (29.4)
где — угловая частота вращения якоря; — электромагнитная мощность двигателя.
Следовательно, выражение представляет собой электромагнитную мощность двигателя.
Преобразовав выражение (29.3) с учетом (29.4), получим
.
Анализ этого уравнения показывает, что с увеличением нагрузки на вал двигателя, т. е. с увеличением электромагнитного момента М, возрастает мощность в цепи обмотки якоря , т. е. мощность на входе двигателя. Но так как напряжение, подводимое к двигателю, поддерживается неизменным , то увеличение нагрузки двигателя сопровождается ростом тока в обмотке якоря .
В зависимости от способа возбуждения двигатели постоянного тока, так же как и генераторы, разделяют на двигатели с возбуждением от постоянных магнитов (магнитоэлектрические) и с электромагнитным возбуждением. Последние в соответствии со схемой включения обмотки возбуждения относительно обмотки якоря подразделяют на двигатели параллельного (шунтовые), последовательного (сериесные) и смешанного (компаундные) возбуждения.
В соответствии с формулой ЭДС частота вращения двигателя (об/мин)
.
Подставив значение из (29.1), получим (об/мин)
, (29.5)
т. е. частота вращения двигателя прямо пропорциональна напряжению и обратно пропорциональна магнитному потоку возбуждения. Физически это объясняется тем, что повышение напряжения U или уменьшение потока Ф вызывает увеличение разности ; это, в свою очередь, ведет к росту тока [см. (29.2)]. Вследствие этого возросший ток повышает вращающий момент, и если при этом нагрузочный момент остается неизменным, то частота вращения двигателя увеличивается.
Из (29.5) следует, что регулировать частоту вращения двигателя можно изменением либо напряжения U, подводимого к двигателю, либо основного магнитного потока Ф, либо электрического сопротивления в цепи якоря .
Направление вращения якоря зависит от направлений магнитного потока возбуждения Ф и тока в обмотке якоря. Поэтому, изменив направление какой-либо из указанных величин, можно изменить направление вращения якоря. Следует иметь в виду, что переключение общих зажимов схемы у рубильника не дает изменения направления вращения якоря, так как при этом одновременно изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.
Пуск двигателя
Ток якоря двигателя определяется формулой (29.2). Если принять U и неизменными, то ток зависит от противо-ЭДС . Наибольшего значения ток достигает при пуске двигателя в ход. В начальный момент пуска якорь двигателя неподвижен и в его обмотке не индуцируется ЭДС . Поэтому при непосредственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток
. (29.6)
Обычно сопротивление невелико, поэтому значение пускового тока достигает недопустимо больших значений, в 10—20 раз превышающих номинальный ток двигателя.
Такой большой пусковой ток весьма опасен для двигателя. Во-первых, он может вызвать в машине круговой огонь, а во-вторых, при таком токе в двигателе развивается чрезмерно большой пусковой момент, который оказывает ударное действие на вращающиеся части двигателя и может механически их разрушить. И наконец, этот ток вызывает резкое падение напряжения в сети, что неблагоприятно отражается на работе других потребителей, включенных в эту сеть. Поэтому пуск двигателя непосредственным подключением в сеть (безреостатный пуск) обычно применяют для двигателей мощностью не более 0,7—1,0 кВт. В этих двигателях благодаря повышенному сопротивлению обмотки якоря и небольшим вращающимся массам значение пускового тока лишь в 3—5 раз превышает номинальный, что не представляет опасности для двигателя. Что же касается двигателей большей мощности, то при их пуске для ограничения пускового тока используют пусковые реостаты (ПР), включаемые последовательно в цепь якоря (реостатный пуск).
Перед пуском двигателя необходимо рычаг Р реостата поставить на холостой контакт О (рис. 29.2). Затем включают рубильник, переводят рычаг на первый промежуточный контакт 1 и цепь якоря двигателя оказывается подключенной к сети через наибольшее сопротивление реостата .
Рис. 29.2. Схема включения пускового реостата
Одновременно через рычаг Р и шину Ш к сети подключается обмотка возбуждения, ток в которой в течение всего периода пуска не зависит от положения рычага Р, так как сопротивление шины по сравнению с сопротивлением обмотки возбуждения пренебрежимо мало.
Пусковой ток якоря при полном сопротивлении пускового реостата
. (29.7)
С появлением тока в цепи якоря возникает пусковой момент , под действием которого начинается вращение якоря. По мере нарастания частоты вращения увеличивается противо-ЭДС , что ведет к уменьшению пускового тока и пускового момента.
По мере разгона якоря двигателя рычаг пускового реостата переключают в положения 2, 3 и т. д. В положении 5 рычага реостата пуск двигателя заканчивается . Сопротивление пускового реостата выбирают обычно таким, чтобы наибольший пусковой ток превышал номинальный не более чем в 2—3 раза.
Так как вращающий момент двигателя М прямо пропорционален потоку Ф [см. (25.24)], то для облегчения пуска двигателя параллельного и смешанного возбуждения сопротивление реостата в цепи возбуждения следует полностью вывести . Поток возбуждения Ф в этом случае получает наибольшее значение и двигатель развивает необходимый вращающий момент при меньшем токе якоря.
Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громоздкими. Поэтому в двигателях большой мощности применяют безреостатный пуск двигателя путем понижения напряжения. Примерами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе (см. § 29.6) или пуск двигателя в схеме «генератор—двигатель» (см. § 29.4).
Двигатель параллельного возбуждения
Схема включения в сеть двигателя параллельного возбуждения показана на рис. 29.3, а. Характерной особенностью этого двигателя является то, что ток в обмотке возбуждения (ОВ) не зависит от тока нагрузки (тока якоря). Реостат в цепи возбуждения служит для регулирования тока в обмотке возбуждения и магнитного потока главных полюсов.
Эксплуатационные свойства двигателя определяются его рабочими характеристиками, под которыми понимают зависимость частоты вращения n, тока I, полезного момента M2, вращающего момента M от мощности на валу двигателя Р2 при и (рис. 29.3, 6).
Для анализа зависимости и , которую обычно называют скоростной характеристикой, обратимся к формуле (29.5), из которой видно, что при неизменном напряжении U на частоту вращения влияют два фактора: падение напряжения в цепи якоря и поток возбуждения Ф. При увеличении нагрузки уменьшается числитель , при этом вследствие реакции якоря уменьшается и знаменатель Ф. Обычно ослабление потока, вызванное реакцией якоря, невелико и первый фактор влияет на частоту вращения сильнее, чем второй. В итоге частота вращения двигателя с ростом нагрузки Р2 уменьшается, а график приобретает падающий вид с небольшой выпуклостью, обращенной к оси абсцисс. Если же реакция якоря в двигателе сопровождается более значительным ослаблением потока Ф, то частота вращения с увеличением нагрузки будет возрастать, как это показано штриховой кривой на рис. 29.3, б. Однако такая зависимость является нежелательной, так как она, как правило, не удовлетворяет условию устойчивой работы двигателя: с ростом нагрузки на двигатель возрастает частота вращения, что ведет к дополнительному росту нагрузки и т. д., т. е. частота вращения n двигателя неограниченно увеличивается и двигатель идет «в разнос». Чтобы обеспечить характеристике частоты вращения форму падающей кривой, в некоторых двигателях параллельного возбуждения применяют легкую (с небольшим числом витков) последовательную обмотку возбуждения, которую называют стабилизирующей обмоткой. При включении этой обмотки согласованно с параллельной обмоткой возбуждения ее МДС компенсирует размагничивающее действие реакции якоря так, что поток Ф во всем диапазоне нагрузок остается практически неизменным.
Рис. 29.3. Схема двигателя параллельного возбуждения ( )
и его рабочие характеристики ( )
Изменение частоты вращения двигателя при переходе от номинальной нагрузки к х.х., выраженное в процентах, называют номинальным изменением частоты вращения:
, (29.8)
где — частота вращения двигателя в режиме х.х.
Обычно для двигателей параллельного возбуждения , поэтому характеристику частоты вращения двигателя параллельного возбуждения называют жесткой.
Зависимость полезного момента от нагрузки установлена формулой . При график имел бы вид прямой. Однако с увеличением нагрузки частота вращения двигателя снижается, и поэтому зависимость криволинейна.
При вращающий момент двигателя . Так как рабочие характеристики двигателя строят при условии , что обеспечивает постоянство магнитных потерь в двигателе, то момент х.х. . Поэтому график зависимости проходит параллельно кривой Если принять поток , то график является в то же время выражением зависимости ,так как .
Для получения аналитического выражения механической характеристики преобразуем выражение (29.5):
; (29.9)
подставив в него из (25.24) значение тока якоря
, (29.10)
получим
, (29.11)
где — частота вращения в режиме х.х.; — изменение частоты вращения, вызванное изменением нагрузки на валу двигателя.
Рис. 29.4. Механические характеристики двигателя параллельного возбуждения:
а — при введении в цепь якоря добавочного сопротивления;
б — при изменении основного магнитного потока;
в — при изменении напряжения в цепи якоря
Если пренебречь реакцией якоря, то (так как ) можно принять . Тогда механическая характеристика двигателя параллельного возбуждения представляет собой прямую линию, несколько наклоненную к оси абсцисс (рис. 29.4, а). Угол наклона механической характеристики тем больше, чем больше значение сопротивления, включенного в цепь якоря. Механическую характеристику двигателя при отсутствии дополнительного сопротивления в цепи якоря называют естественной (прямая 1). Механические характеристики двигателя, полученные при введении дополнительного сопротивления в цепь якоря, называют искусственными (прямые 2 и 3).
Вид механической характеристики зависит также и от значения основного магнитного потока Ф. Так, при уменьшении Ф увеличивается частота вращения х.х. и одновременно увеличивается , т. е. увеличиваются оба слагаемых уравнения (29.11). Это приводит к резкому увеличению наклона механической характеристики, т. е. к уменьшению ее жесткости (рис. 29.4, б).
При изменении напряжения на якоре U меняется частота вращения , а остается неизменной. В итоге жесткость механической характеристики (если пренебречь влиянием реакции якоря) не меняется (рис. 29.4, в), т. е. характеристики смещаются по высоте, оставаясь параллельными друг другу.