Закон перехода количественных изменений в качественные

Рис. 14. S-образная кривая. Где: P - параметр системы, t - время.

Закон перехода количественных изменений в качественные вскрывает общий механизм развития. В процессе развития количественные изменения в системе происходят непрерывно. При достижении определенного предела совершаются качественные изменения. Новое качество ускоряет темпы роста. Количественные изменения при этом совершаются постепенно (эволюционно), а качественные - скачком. Характер и продолжительность скачка могут быть разнообразными - длительными и кратковременными, бурными и относительно спокойными, с взрывом и без него и так далее. Любая система (в том числе и техническая) проходит несколько этапов своего развития (см. рис. 14).

Вначале система развивается медленно (участок I), при достижении некоторого уровня развитие ускоряется (участок II) и после достижения некоторого более высокого уровня скорость роста уменьшается и в конечном итоге рост параметра системы прекращается (участок III), что означает появление в системе некоторых противоречий. Иногда параметры начинают уменьшаться (участок IV) - система "умирает".

Подобные кривые часто называют S - образными.

Для технических систем:

  • участок I - "зарождение" системы (появление идеи и опытных образцов),
  • участок II - промышленное изготовление системы и доработка системы в соответствии с требованиями рынка,

Рис. 15. Скачкообразное развитие систем

  • участок III - незначительное "дожимание" системы, как правило, основные параметры системы уже не изменяются, происходят "косметические" изменения, чаще всего не существенные изменения внешнего вида или упаковки,
  • участок IV - ухудшение определенных параметров системы, которое может вызываться несколькими фактами:
    • следование моде, влияние экономической, социальной или политической ситуации, религиозные ограничения и т.п.;

Рис. 16. Огибающая кривая'

    • физическое и моральное старение системы.

Как правило, на участке IV система прекращает свое существование или утилизируется. Прекращение роста данной системы не означает прекращение прогресса в этой области. Появляются новые более совершенные системы - происходит скачок в развитии. Это типичный пример проявления закона перехода количественных изменений в качественные. Такой процесс изображен на рис. 15.

На смену системе 1 приходит 2. Скачкообразное развитие продолжается - появляются системы 3, 4 и т.д. (рис. 16).

Общий прогресс в отрасли можно показать при помощи касательной к данным кривым (показанная на рисунке пунктирной линией) - так называемой огибающей кривой, [119].

Развитие любого вида техники может быть примером, подтверждающим этот закон. Обратимся к судостроению.

Пример 39. Скорость передвижения гребных судов (рис. 17) постепенно повышалась за счет увеличения числа весел, но не превышало 7-8 узлов[120].

Скачек в развитии - появление парусных судов(рис. 18). Рост скорости здесь осуществлялся путем увеличения общей площади парусов. Однако самые быстроходные парусные корабли не показывали более 12-13 уз. В тоже время коммерческие клиперы середины XIX в. развивали до 20 уз[121].

Дальнейшее повышения скорости передвижения и не зависимость его от скорости и направления ветра привело к очередному скачку - появились суда с двигателями(рис. 19). Увеличение скорости хода в этом типе судна происходило путем совершенствования двигателей и замены их на другие типы с большей удельной мощностью.

Следующим скачком в развитии судостроения было вынесение водоизмещающей части корпуса судна из воды. Появились суда на подводных крыльях (рис. 20) и полупогруженные суда (рис. 21). В дальнейшем еще уменьшили сопротивление воды о корпус (о стойки крыльев) - придумали суда на воздушной подушке (рис. 22). И, наконец, дальнейшее уменьшение сопротивление движению корпуса - судно вынесли еще дальше от воды - появились экранопланы (рис. 23).

Рис. 17. Гребное судно Рис. 18. Парусное судно Рис. 19. Судно с двигателем Рис. 20. Судно на подводных крыльях
Рис. 21. Полупогруженное судно Рис. 22. Судно на воздушной подушке Рис. 23. Экраноплан  

Пример 40. Гребные суда.

Общая тенденция развития гребных судов показана на рис. 24.

Рис. 24. Тенденция развития гребных судов.

Сначала лодкой управляли с помощью одного весла.
Рис. 25 а. Каноэ Рис. 25 б. Гондола

 

До нас дошли каноэ [122] (рис. 25 а) и гондола [123] (рис. 25 б).

Далее число весел в лодке увеличивалось.

Гребные суда первоначально располагали весла в один ярус (рис. 24 б).

Увеличение числа весел привело к необходимости располагать их в два яруса, например, греческая боевая галера приблизительно V в. до н.э., так называемая бриема (рис. 24 в). Она, естественно, обладала большей скоростью, чем корабль той же величины с половинным числом весел.

Далее в этом же столетии получили распространение и триеры - боевые корабли с тремя "этажами" гребцов (рис. 24 г).

Были и корабли с четырьмя ярусами весел - кинкеремы и пятью ярусами весел - пентеры. Древнегреческие судостроители умели строить еще большие суда, достигавшие 100 м в длину и более 10 м в ширину, имевшие более 400 гребцов [124]. При Птолемее IV Филопаторе (221-205 гг. до н.э.) был построен корабль длиной около 125 м и шириной 22 м [125].

Пример 41. Парусные суда.

Общая тенденция развития парусных судов показана на рис. 26.

Рис. 26. Тенденция развития парусных судов.

Первоначально появился один парус на одной мачте.

Рис. 27. Пароход

В дальнейшем количество парусов и мачт увеличивалось. Были суда с тремя и более мачтами (рис. 26)[126]и многочисленными парусами.

Пример 42. Дальнейшее повышение скорости передвижения и не зависимость его от скорости и направления ветра привело к очередному скачку - появились суда с двигателями (рис. 27). Увеличение скорости хода в этом типе судна происходило путем совершенствования двигателей и замены их на другие типы с большей удельной мощностью. Первоначально появился паровой двигатель, затем дизель, паровая или газовая турбина, атомная установка.

Пример 43. Следующий скачек произошел, когда водоизмещающую часть корпуса судна вынесли из воды - суда на подводных крыльях (рис. 20), а в ппотом появились полупогруженные суда (рис. 21).

Пример 44. В дальнейшем еще уменьшали сопротивление воды о корпус (о стойки крыльев) - суда на воздушной подушке (рис 22).

Пример 45. И, наконец, появились экранопланы (рис. 23).

 

Рис. 28. Судно с надувными валиками

Пример 46. Имеется и промежуточный (весьма забавный) вариант. Между водоизмещающими судами и судами на подводных крыльях. Запатентовано судно, снабженное надувными или полыми валиками, используемыми в качестве колес.

На рисунке 28 приведен вид с боку этого судна. К корпусу 1 судна посредством конструкции 2 и 3 крепится валик 4. При движении судна корпус остается приподнятым над водой. Судно может передвигаться с меньшей затратой энергии, чем обычное судно, кроме того, такие суда смогут передвигаться по мелководью[127].

Учет закона перехода количественных изменений в качественные происходит на этапе выбора задачи и прогнозирования развития систем.

Закон отрицания отрицания

Суть закона отрицания отрицания заключается в том, что процесс поступательного развития происходит в относительной повторяемости, как бы по пройденным ступеням. Но повторение каждый раз происходит на более высоком уровне с применением новых элементов, материалов, технологий и т.д. Можно сказать, что процесс развития происходит по спирали. Наиболее ярко это заметно в моде.

Проиллюстрируем этот закон.

Рис. 29. Шахта в корме

Пример 47. В XIX веке на парусно-винтовых судах двигатели использовались только при штиле. Чтобы гребной винт не создавал сопротивления при плавании под парусами, его делали съемным и поднимали через шахту в корме (рис. 29) на палубу[128] .

Совершенствование силовой установки позволило избавиться от парусов. Потребность в съеме винта отпала. Шахту в корме над винтом делать перестали. В ХХ веке большие гребные винты стали делать со съемными лопастями. Судно оснастили оборудованием для замены лопастей гребного винта на плаву. И снова появилась необходимость делать в корме шахты. В изобретении Великобритании, сделанном в 1968 году и запатентованном и в СССР предложено для улучшения условий ремонтопригодности, в навесной корме, расположенной над гребным винтом, сделать шахту, через которую поднимают и опускают ремонтируемую лопасть.

Вот еще одно решение этой проблемы для транспортных и рыболовных судов прибрежного плавания, оснащенных и двигателем и парусами. Датские инженеры создали необычный винт. Когда судно движется под парусами, винт автоматически складывается и практически не создает сопротивления. Но стоит упасть скорости судна, как лопасти винта тотчас занимают рабочее положение. Одновременно включается и двигатель. Суда с таким винтом развивают скорость на 10% выше обычных [129].

Пример 48. С появлением пароходов роль парусного флота стала уменьшаться, и сейчас паруса используются лишь на небольших рыболовецких, спортивных или учебных судах. Однако в Гамбургском институте кораблестроения (ФРГ) разработан проект коммерческого парусного судна (рис. 30).

Паруса напоминают поставленные вертикально самолетные крылья. Мачты судов поворачиваются вокруг своей оси, ставя паруса под наиболее благоприятным углом к ветру. КПД новых парусов в 1,5 раза больше традиционных. Паруса ставятся и убираются по такому же принципу, как раздвижной занавес в театре.

Рис. 30. Парус-крыло

Судно автоматизировано, и им можно было бы даже управлять на расстоянии. При среднем ветре под парусами судно может идти со скоростью 12-15 узлов, как и современные морские транспортные суда; при попутном ветре до 20 узлов (у судов в двигателями скорость при свежем ветре падает). Система парусов позволяет использовать самый слабый порыв ветра. На случай полного безветрия, что случается крайне редко, придется установить на судне маломощный двигатель. В ветреную погоду он будет управлять парусами. На паруснике установлен компьютер, обрабатывающий метеорологическую информацию, постоянно поступающую со спутника земли или наземной станции, и рекомендует капитану оптимальный курс.

В условиях энергетического кризиса паруса с успехом могут соперничать с любым двигателем, работающем на жидком топливе. Конструкторы считают, что достаточно вместительные парусники могут быть экономичнее даже судов с ядерными установками [130].

На рис. 30 изображен спортивное судно с крылом.