Полимеры. Классификация. Термореактивные и термопластичные полимеры.
Полимером называется органическое вещество, длинные
молекулы которого построены из одинаковых многократно повторяющихся звеньев —
мономеров.
Полимеры, как правило, являются хорошими диэлектриками. Они обладают низкими диэлектрическими потерями, высоким удельным сопротивлением, высокой электрической прочностью, высокой технологичностью и, как правило, невысокой ценой. Кроме того, на основе полимеров с дисперсными добавками различной электропроводности, теплопроводности, магнитной проницаемости, диэлектрической проницаемости, твердости и т.п. можно получать разнообразные композиционные материалы с широким спектром свойств. По технологическим признакам полимерные материалы делятся на 2 класса - термопласты и реактопласты.
По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.
§ Органические полимеры.
§ Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
Термопласты - размягчаются при нагревании, что позволяет использовать простую технологию термопрессования. При этом гранулы исходного полимера помещают в камеру термопласт - автомата, нагревают до температуры размягчения, прессуют и охлаждают. Так делают мелкие диэлектрические детали. Для крупногабаритных изделий, типа кабелей, полутвердый расплав выдавливают через фильеру вместе с внутренним электродом кабеля.
Наиболее распространенным диэлектриком этого класса является полиэтилен H-(CH2)nH. Полиэтилен производят путем полимеризации газа этилена при повышенных давлениях и температурах.
Из других термопластичных полимеров, используемых в энергетике в виде электроизоляционных пленок отметим полипропилен, поливинилхлорид, лавсан.
Рядом уникальных свойств обладает фторопласт (политетрафторэтилен). Он химически инертен, не растворяется в растворителях, вплоть до температуры 260 °С, абсолютно не смачивается водой, не гигроскопичен. Недостатки - не стоек под действием радиации, обладает хладотекучестью.
Реактопласты - при нагревании не размягчаются, после достижения некоторой температуры начинаются разрушаться. Изделия из них обычно делают различными способами. Одна из распространенных дешевых технологий заключается в следующем. Сначала готовят пресс-порошки полимера. Затем пресс порошок засыпают в пресс-форму и прессуют при определенном давлении и температуре. При этом возникает сцепление между деформированными частицами, и после охлаждения материал готов к использованию. Возможно проведение полимеризации из исходных компонентов в заранее подготовленных формах. Так делают изделия из эпоксидных полимеров, кремнийорганической резины.
Достаточно дешевы и технологичны реактопласты на основе фенолформальдегидных полимеров (бакелит) и аминоформальдегидных полимеров. Их электрофизические характеристики невысоки.
Эпоксидные полимерыобладают хорошей механической прочностью, удовлетворительными электрофизическими характеристиками. Они являются полярными диэлектриками, некоторые марки эпоксидных материалов имеют диэлектрическую проницаемость до 16. Высокая полярность приводит к слабой водостойкости. Главное преимущество эпоксидных компаундов - простота технологии приготовления. Компаунды холодного отвержения получают смешиванием эпоксидной смолы, отвердителя и пластификатора. В период времени до начала твердения (от минут до часов) жидкую композицию можно заливать в требуемую форму. Часто компаунд используют для ремонта диэлектрических деталей в качестве клея.
Из других полимеров-реактопластов отметим диэлектрический материал с высокой механической прочностью - капролон, с большим диапазоном рабочих температур (-100°С до +250°С) - полиимиды и композиты на их основе.