Кинестетические ощущения и чувство положения конечностей

Чувство положения тела и движения конечностей в пространстве обеспечивают сигналы, приходящие в мозг от рецепторов двух типов. Рецепторы первого типа представлены мышечными веретенами, нахо­дящимися внутри мышц, и рецепторами Гольджи, расположенными в сухожилиях: они посылают в нервные центры сигналы о степени растяжения или сокращения мышцы (Paillard, 1976) (рис. А.5). Рецепторы


Моторное окончание альфа-волокна
Ветви периферического нерва
Мышечное веретено Мышечное волокно Свободное окончание Сухожильный орган Гольджи Инкапсулированное нервное окончание
Рис. А.5. Мышечные волокна и мы­шечное веретено.


Биологические основы поведения 225

второго типа находятся в суставах и посылают в мозг непрерывные сигналы о взаимном расположении различных частей тела.

Чувство равновесия и положения головы

Тело сохраняет равновесие благодаря тому, что мозг получает информацию о положении головы в пространстве. Эту информацию обеспечивает лабиринт - небольшой орган, расположенный во внутрен­нем ухе. Лабиринт состоит из трех отделов: улитки, речь о которой пойдет позже, полукружных каналов, чувствительных к вращению голо­вы, и двух полостей -круглого и овального мешочков (саккулюса и утри-кулюса), ответственных за восприятие прямолинейного движения.

Три полукружных канала лежат в трех взаимно перпендикулярных плоскостях и содержат студенистое вещество, в которое погружены чувствительные волоски (см. рис. А9). Такого же рода волоски имеются в мешочках. При вращении или прямолинейном смещении головы движение передается студенистому веществу, а вместе с ним и чувстви­тельным волоскам. Эта информация воспринимается нервными клетка­ми, от которых отходят волоски, а затем поступает в головной мозг *.

Химическая чувствительность

Вкусовая и обонятельная чувствительность называется химической, так как возбуждение соответствующих рецепторов происходит в резуль­тате «химического анализа» молекул, растворенных в слюне (вкус) или находящихся в воздухе (запах).

Вкус

Традиционно различают четыре типа вкусовых ощущений: сладкое, кислое, соленое и горькое, которые воспринимаются определенными участками языка с помощью примерно тысячи вкусовых сосочков (рис. А.6). Эти сосочки представляют собой небольшие выступы, окруженные ямкой, и расположены на всех поверхностях языка, включая заднюю его часть. В каждой ямке насчитывается от 10 до 15 вкусовых почек, содержащих по 15-20 рецепторных клеток. Каждая из таких клеток обладает специфической чувствительностью только к определенным молекулам, и в одной и той же почке могут быть клетки, чувствительные к молекулам разного типа.

Жизнь рецепторных клеток сравнительно коротка. Через четыре дня они фактически деградируют, так что их популяция во вкусовых почках полностью обновляется в среднем каждые 7 дней.

Понимание этих процессов и их связи с ощущениями других модальностей приобретает особую важность в наше время, когда человек с головокружительной скоростью поднимается в космос и пребывает там в состоянии полной не­весомости.


226 Приложение А

Нерв, идущий в головной мозг

Рис. А.6. А. Вкусовая почка. -6'. Разрез вкусового сосочка.

Обоняние

Для большинства низших животных обоняние-самое важное из чувств. Кроме того, это единственный вид ощущений, обусловленный прямой передачей информации в кору, минуя промежуточные низшие центры головного мозга. В каждой половине носовой полости, в ее верхней части, насчитывается около 30 млн. рецепторных клеток, ответ­ственных за распознавание присутствующих в воздухе пахучих веществ (рис. А.7),

Между тем до сих пор мало что известно о том, как происходит такое распознавание. Теоретически различают семь основных групп запахов. Запах может быть эфирным (ацетон), камфорным (нафталин), мускус­ным (мускус), цветочным (запах розы), ментоловым (мята), острым (уксус) или гнилостным (запах тухлого яйца). Чтобы объяснить, каким образом мозг распознает запахи, было выдвинуто предположение, что каждая клетка функционирует как замок, к которому подходит только один ключ, соответствующий специфическому типу молекул определен­ной формы и величины. Позже, однако, было показано, что иногда молекулы со сходной структурой вызывают разные обонятельные ощу­щения.

Обоняние играет важную роль в оценке потребляемой пищи. Когда нос «забит» (например, при насморке), пища кажется совсем безвкусной. Мы не способны хорошо оценивать качество и вкус пищи только в результате ее пережевывания и проглатывания - мы всегда пропускаем воздух через полость носа, где расположены обонятельные клетки.


Биологические основы поведения 227


 


Обонятельна; слизистая
Волоски
•Обонятельная луковица
Рис. А.7. Обонятельная система


Обоняние, кроме того, играет важную роль в коммуникации живот­ных (особенно низших): специальные железы их выделяют феромоны, позволяющие животным метить свою территорию. По-видимому, у человека эта функция обоняния в сексуальном плане приобретает еще большее значение (см. документ 11.8).

Слух

Стимулы, вызывающие слуховые ощущения, представляют собой волны, которые образуются в результате колебаний частиц воздуха. Вибрации какого-либо предмета вызывают поочередное образование уплотненных и разреженных зон воздуха, которые затем в виде последо­вательных волн распространяются в пространстве со скоростью около 330 метрои в секунду (рис. А.8).

Функция уха заключается в преобразовании этих колебаний в нерв­ные импульсы. Слуховое ощущение зависит главным образом от харак­теристик звуковой волны. Так, громкость звука определяется амплиту­дой волны, а его высота-частотой колебаний (см. группу таблиц A.I);

тембр звука, который характеризует издающий его инструмент, зависит от числа и интенсивности образующихся гармоник (обертонов).

Известно, что человеческое ухо может безболезненно воспринимать


228 Приложение А

-/^-^-.zx-0--

/ \У \^J V- Разреже!

Разрежение


Камертон


Рис. А.8 Схематическое изображение звуковых волн, исходящих от камертона Ветви камертона своими колебаниями создают последовательные сжатия и раз­режения воздуха. Гребни волны соответствуют фазам сжатия, впадины фазам разрежения Базисная прямая соответствует среднему положению ветвей камер­тона.

звук, интенсивность которого в тысячу миллиардов (1012) раз выше интенсивности едва слышимого звука. В логарифмическом масштабе эта разница составляет 12 бел или 120 децибел (децибел-десятая часть бела), а это значит, что, например, звук интенсивностью 100 децибел в 10 раз сильнее звука в 90 децибел и в 1000 раз сильнее звука в 70 децибел.

Что касается частоты звуковых колебаний, то воспринимаемый человеческим ухом диапазон простирается от 20 колебаний в секунду (20 Гц) до 20 тысяч колебаний в секунду (20 000 Гц).

Ухо состоит из трех отделов (рис. А.9). Наружное ухо состоит из ушной раковины и слухового прохода длиной 25 мм, упирающегося в барабанную перепонку-мембрану, вибрирующую под воздействием звуковых волн. В среднем ухе имеются три слуховые косточки: молото­чек, наковальня и стремя, обеспечивающие передачу вибраций овальном) окну на границе внутреннего уха. Во внутреннем ухе находится лаби­ринт, в состав которого входит улитка - трубка длиною 34 мм, спираль-но свернутая в 2,5 оборота наподобие раковины виноградной улитки. Улитка внутреннего уха заполнена жидкостью, которая приходит в дви­жение под влиянием звуковых волн, передаваемых косточками среднего уха. Движение жидкости вызывает прогибание и смещение базилярной мембраны, проходящей вдоль всей улитки. Эта деформация базилярной мембраны сильнее всего выражена у основания улитки при воздействии высоких звуков, а у вершины-при воздействии низких. В месте макси­мальной деформации базилярной мембраны в результате возбуждения ее чувствительных клеток, волоски которых соприкасаются с нависаю­щей над ними текториальной мембраной, происходит преобразование вибраций в нервные импульсы. Таким образом, частота звука разли­чается в соответствии с тем участком базилярной мембраны, где происходит ее деформация, а его громкость -в зависимости от числа клеток, вовлеченных в деформацию. Затем информация передается в головной мозг по слуховому нерву, образованному отростками чувст­вительных волосковых клеток.


Биологические основы поведения 229

Рис А Ч (вверху) Поперечный разрез уха

Рис А 10 (внизу). Разрез улитки Жидкость, заполняющая улитку, приводится в движение в результате воздействия стремени на овальное окно Распростра­няющаяся волна вызывает деформацию базилярной мембраны и возбуждение волосковых клеток, приходящих в соприкосновение с расположенной над ними текториальной мембраной Возникающие при этом нервные импульсы пере­даются по волокнам слухового нерва

Нарушения слуха. Между тем моментом, когда барабанная перепон­ка начинает колебаться под действием звуковых волн, и началом передачи нервных сигналов в мозг могут возникать различные наруше­ния, обусловленные поражением того или иного отдела уха. Здесь


230 Приложение А

следует различать так называемую проводниковую и сенсорную глухо­ту.

Проводниковая (кондуктивная) глухота развивается в результате старения организма или вследствие инфекции среднего уха, вызывающей потерю подвижности сочленений слуховых косточек. Возникающее в ре­зультате ослабление слуха можно тем не менее компенсировать слухо­вым аппаратом, который усиливает звуковые сигналы перед их прохож­дением по костям черепной коробки.

Сенсорная глухота возникает в результате деградации или разруше­ния волосковых клеток внутреннего уха, ответственных за преобразова­ние колебаний базилярной мембраны в нервные импульсы. Иногда разрушению подвергается лишь какая-то определенная группа клеток. Это может случиться у рабочего, вынужденного с утра до вечера ковать металлические изделия: глухота в этом случае развивается в отношении только тех звуковых частот, которые вызывали постоянное возбуждение волосковых клеток.

Подобная деградация нервных структур уха приводит к необратимой сенсорной глухоте, не поддающейся восстановлению каким-либо хирур­гическим вмешательством. Технический прогресс, однако, позволил недавно сконструировать протез, с помощью которого часть неработаю­щих сенсорных клеток можно присоединить к микрокомпьютеру, спо­собному обеспечить различение звуковых волн (пока довольно грубое) и передачу соответствующей информации по слуховому нерву в головной мозг.

Зрение

Свет - это лишь узкая полоса в спектре электромагнитных колебаний. где энергия может восприниматься человеческим глазом (см. вставку \Л}. Световой стимул тем интенсивнее (т.е. тем ярче), чем больше фотонов соответствует той или иной частоте.

Глаз функционирует наподобие фотоаппарата. Как и фотоаппарат, он способен изменять диаметр отверстия для прохождения света и наводить на фокус линзу для получения четкого изображения. Снабжен он и чувствительной поверхностью, где химическая структура пигмен­тов, так же как и химическая структура фотопленки, способна изме­няться под действием фотонов (рис. А. 11).

Световые лучи проникают в глаз через роговицу, которая концентри­рует их перед проникновением в водянистую влагу - прозрачную жид­кость, питающую роговицу и поддерживающую определенную форму глаза. Затем лучи проходят через отверстие зрачка, размер которого регулируется радужной оболочкой - при ярком свете он уменьшается, а в темноте увеличивается. После этого лучи фокусируются чечевицеобраз-ным хрусталиком, который становится более плоским или более выпук­лым в зависимости от того, удаляется ли фокусируемый предмет от глаза или приближается к нему; благодаря этому процессу аккомодации световые лучи, прошедшие через стекловидное тело (студенистое вещест-





 


Рис. А. 11. Глаз можно уподобить фотоаппарату, объектив которого соответ­ствует хрусталику, диафрагма-радужной оболочке, а фотопленка-сетчатке.

во, выполняющее примерно те же функции, что и водянистая влага), формируют на сетчатке глаза четкое изображение.

Рецепторами в сетчатке служат клетки, содержащие чувствительные к свету вещества - фотопигменты, разлагающиеся под действием фотонов и запускающие тем самым электрическую реакцию рецепторов. По периферии сетчатки распределены 120 млн. палочек, не способных различать цвета. Зрение в черных, серых и белых тонах не требует много света-палочки весьма эффективно функционируют и при слабом осве­щении. Цветовое зрение обеспечивают 6-7 млн. колбочек, сосредоточен­ных в центральной области сетчатки, особенно в небольшой, с булавоч­ную головку зоне, где около 50 тысяч колбочек образуют так называе­мую центральную ямку. Каждая колбочка содержит фотопигмент одно­го из трех типов, чем и определяется ее чувствительность к световым волнам той или иной длины-к красному, зеленому или синему цвету;

соответствующий дополнительный цвет подавляет реакцию колбочки1.

Колбочки и палочки образуют целую сеть связей с двумя другими слоями клеток, расположенными впереди слоя рецепторов, - сначала с биполярными клетками, а затем с ганглиозны.ми клетками, которые посылают свои нервные волокна в составе зрительного нерва в головной мозг. Таким образом, световые волны, прежде чем воздействовать на

' Об этом и о том, как формируются отрицательные последовательные образы, см. в документе 8.2.


232 Приложение А

Рис. А. 12. Проникающие в сетчатку световые волны, прежде чем вызвать воз­буждение палочек и колбочек на самом дне глаза, проходят через три слоя нервных элементов. Возникающие в результате нервные сигналы проводятся по путям, образуемым сначала биполярными, а затем ганглиозными клетками, и передаются потом в головной мозг по волокнам зрительного нерва.

фоторецепторы (колбочки или палочки) и породить нервные сигналы в биполярных и ганглиозных клетках, вначале должны пройти сквозь два слоя этих самых клеток (рис. А. 12).

Ганглиозных клеток насчитывается около миллиона, т. е. на 130 рецепторных клеток в среднем приходится одна ганглиозная клетка. Однако «концентрация» проводящих путей различна в зависимости от того, идет ли речь о палочках или о колбочках. Информация от палочек передается по «общим» нервным путям, где одна ганглиозная клетка приходится на многие десятки палочек; что касается колбочек, то многие из них располагают «собственным», индивидуальным выходом в зри­тельный нерв и головной мозг. Такой характер передачи информации. наряду с тем фактом, что колбочки более плотно сконцентрированы в центральной ямке. позволяет понять, почему острота зрения максималь­на именно в этой области сетчатки и почему предмет, изображение которого проецируется в центр сетчатки, всегда воспринимается отчет­ливее, чем предмет, расположенный ближе к периферии поля зрения.

Психологические аспекты восприятия цвета. Как видно из всего



Биологические основы поведения


 


сказанного выше, цвет не является свойством света как такового, а скорее представляет собой результат его взаимодействия со специфичес­кими фотопигментами и последующих психических процессов.

Восприятие цвета имеет три измерения. Прежде всего это цветовой тон, характеризующий качество цвета и определяющий его название:

красный, зеленый, фиолетовый и т.д. Далее, насыщенность отражает количественный аспект цвета - от белого, насыщенность которого равна нулю, через более густые пастельные оттенки до полностью насыщенно­го, например багряно-красного или золотисто-желтого. Наконец, яр­кость определяется амплитудой световых волн, т.е. числом фотонов, участвующих в каждом колебательном цикле, что соответствует воспри­ятию большей или меньшей интенсивности света. Таким образом, эти три психологических измерения воспринимаемого цвета, в основе кото­рых лежат чисто физические явления, позволяют нам преломлять информацию об окружающем мире в психологическом плане.

Нарушения рецепторных функций сетчатки. Существует множество аномалий зрения. Есть среди них и такие, которые связаны с дефектами фоторецепторов и обусловливают цветовую и ночную («куриную») слепоту.

Цветовая слепота, называемая также дальтонизмом, - аномалия, ко­торой страдает 5% всех людей, главным образом мужчины. Дальтонизм обусловлен выпадением функций колбочек одного из трех типов-чаще всего тех, которые чувствительны к световым волнам, соответствующим красному или зеленому цвету. Больной не способен различать цвета, воспринимаемые здоровым человеком как «красный» и «зеленый». При этом его цветовое зрение ограничивается более или менее темными оттенками желтого, синего и серого цветов.

На 1 млн. людей приходится 25 человек, вообще не различающих цвета. Возможно, что это нарушение возникает в самом раннем детстве вследствие заболевания или же развивается в результате отравления загрязняющими веществами, а также может быть обусловлено наследст-веным дефектом.

Ночная слепота обусловлена нарушением функции палочек, которые, как уже отмечалось, являются единственными фоточувствительными элементами сетчатки, способными функционировать при слабом освеще­нии. Это нарушение может возникнуть по многим причинам, самая обычная из которых - недостаток витамина А, необходимого для восста­новления зрительного пигмента палочек.