Раздел XII. Статистическое моделирование и прогнозирование социально-экономических процессов
В условиях перехода страны к рыночной экономике возрастает интерес и потребность в статистических методах анализа и прогнозирования, в количественных оценках социально-экономических явлений, получаемых с использованием многомерных статистических методов на ПЭВМ.
В данном разделе излагаются основные теоретические положения таких многомерных статистических методов, как корреляционный, регрессионный, компонентный и кластерный анализ, ряд задач эконометрики.
Значительное внимание уделяется логическому анализу исходной информации и экономической интерпретации получаемых результатов, а также рассмотрению подробно разработанных типовых примеров, взятых из экономической практики и решенных с использованием ЭВМ.
Примеры иллюстрируют необходимость комплексного применения многомерных статистических методов. При этом корреляционный анализ используется, с одной стороны, на этапе предварительного анализа для выявления мультиколлинеарности, а с другой — при оценке адекватности регрессионной модели; компонентный анализ используется в задачах снижения размерности, а также при построении уравнения регрессии на главных компонентах и в задачах классификации. При окончательном выборе модели рекомендуется использовать как экономические, так и статистические критерии. Наряду с точечными оценками рассматриваются методы построения интервальных оценок коэффициентов и уравнения регрессии.
В 53.5 «Основы эконометрики» рассматриваются производственные функции и системы одновременных эконометрических уравнений, двухшаговый метод наименьших квадратов.
Настоящий раздел предназначен для студентов, изучающих многомерные статистические методы, и специалистов, желающих повысить свою квалификацию в области применения современных эконометрических методов для анализа и прогнозирования социально-экономических явлений.
Глава 53. Методы многомерного статистического анализа и моделирования социально-экономических явлений
Корреляционный анализ
Корреляционный анализ является одним из методов статистического анализа взаимозависимости нескольких признаков.
Основная задача корреляционного анализа состоит в оценке корреляционной матрицы генеральной совокупности по выборке и определении на основе этой матрицы частных и множественных коэффициентов корреляции и детерминации.
Парный и частный коэффициенты корреляции характеризуют тесноту линейной зависимости между двумя переменными соответственно на фоне действия и при исключении влияния всех остальных показателей, входящих в модель. Они изменяются в пределах от -1 до +1, причем чем ближе коэффициент корреляции к 1, тем сильнее зависимость между переменными. Если коэффициент корреляции больше нуля, то связь положительная, а если меньше нуля — отрицательная.
Множественный коэффициент корреляции характеризует тесноту, линейной связи между одной переменной (результативной) и остальными, входящими в модель; он изменяется в пределах от 0 до 1.
Квадрат множественного коэффициента корреляции называется множественным коэффициентом детерминации. Он характеризует долю дисперсии одной переменной (результативной), обусловленной влиянием всех остальных переменных (аргументов), входящих в модель.
Исходной для анализа является матрица
размерности п х k, i-я строка которой характеризует i-е наблюдение (объект) по всем k показателям (j = 1, 2, ..., k).
В корреляционном анализе матрицу Х рассматривают как выборку объема п из k-мерной генеральной совокупности, подчиняющейся k-мерному нормальному закону распределения.
По выборке определяют оценки параметров генеральной совокупности, а именно: вектор средних , вектор средних квадратических отклонений s и корреляционную матрицу R порядка k:
где
(53.1)
(53.2)
xij — значение i-го наблюдения j-го фактора,
ril — выборочный парный коэффициент корреляции, характеризующий тесноту линейной связи между показателями xj и xl. При этом rjl является оценкой генерального парного коэффициента корреляции.
Матрица R является симметричной (rjl = rlj) и положительно определенной.
Кроме того, находятся точечные оценки частных и множественных коэффициентов корреляции любого порядка. Например, частный коэффициент корреляции (k - 2)-го порядка между переменными х1 и х2 равен
(53.3)
где Rjl — алгебраическое дополнение элемента rjl корреляционной матрицы R. При этом Rjl = (-l)j+l Mjl, где Mjl — минор, т.е. определитель матрицы, получаемой из матрицы R путем вычерчивания j-й строки и l-го столбца.
Множественный коэффициент корреляции (k - 1)-го порядка результативного признака x1 определяется по формуле
(53.4)
где | R | — определитель матрицы R.
Значимость частных и парных коэффициентов корреляции, т.е. гипотеза H0: ρ = 0, проверяется по t-критерию Стьюдента. Наблюдаемое значение критерия находится по формуле
(53.5)
где r — соответственно оценка частного или парного коэффициента корреляции ρ; l — порядок частного коэффициента корреляции, т.е. число фиксируемых факторов (для парного коэффициента корреляции l=0).
Напомним, что проверяемый коэффициент корреляции считается значимым, т.е. гипотеза H0: ρ = 0 отвергается с вероятностью ошибки α, если tнабл по модулю будет больше, чем значение tкр, определяемое по таблицам t-распределения для заданного α и υ = n – l - 2.
Значимость коэффициентов корреляции можно также проверить с помощью таблиц Фишера — Иейтса.
При определении с надежностью у доверительного интервала для значимого парного или частного коэффициента корреляции р используют Z-преобразование Фишера и предварительно устанавливают интервальную оценку дляZ:
(53.6)
где tγ вычисляют по таблице значений интегральной функции Лапласа из условия
значениеZ' определяют по таблице Z-преобразования по найденному значению r. ФункцияZ' — нечетная, т.е.
Обратный переход от Z к ρ осуществляют также по таблице Z-преобразования, после использования которой получают интервальную оценку для ρ с надежностью γ:
Таким образом, с вероятностью γ гарантируется, что генеральный коэффициент корреляции ρ будет находиться в интервале (rmin, rmax).
Значимость множественного коэффициента корреляции (или его квадрата — коэффициента детерминации) проверяется по F-критерию. Например, для множественного коэффициента корреляции проверка значимости сводится к проверке гипотезы, что генеральный множественный коэффициент корреляции равен нулю, т.е. H0 : ρ1/2,…,k = 0, а наблюдаемое значение статистики находится по формуле
(53.7)
Множественный коэффициент корреляции считается значимым, т.е. имеет место линейная статистическая зависимость между х1 и остальными факторами х2, ..., хk, если Fнабл > Fкр, где Fкр определяется по таблице F-распределения для заданных α, υ1 = k - 1, υ2 = n - k.
Регрессионный анализ
Регрессионный анализ — это статистический метод исследования зависимости случайной величины у от переменных (аргументов) хj (j = 1, 2,..., k), рассматриваемых в регрессионном анализе как неслучайные величины независимо от истинного закона распределения xj.
Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием = φ(x1, ..., хk), являющимся функцией от аргументов хj и с постоянной, не зависящей от аргументов дисперсией σ2.
Для проведения регрессионного анализа из (k + 1)-мерной генеральной совокупности (у, x1, х2, ..., хj, ..., хk) берется выборка объемом n, и каждое i-е наблюдение (объект) характеризуется значениями переменных (уi, xi1, хi2, ..., хij, ..., xik), где хij — значение j-й переменной для i-го наблюдения (i = 1, 2,..., n), уi — значение результативного признака для i-го наблюдения.
Наиболее часто используемая множественная линейная модель регрессионного анализа имеет вид
(53.8)
где βj — параметры регрессионной модели;
εj — случайные ошибки наблюдения, не зависимые друг от друга, имеют нулевую среднюю и дисперсию σ2.
Отметим, что модель (53.8) справедлива для всех i = 1,2, ..., n, линейна относительно неизвестных параметров β0, β1,…, βj, …, βk и аргументов.
Как следует из (53.8), коэффициент регрессии Bj показывает, на какую величину в среднем изменится результативный признак у, если переменную хj увеличить на единицу измерения, т.е. является нормативным коэффициентом.
В матричной форме регрессионная модель имеет вид
(53.9)
где Y — случайный вектор-столбец размерности п х 1 наблюдаемых значений результативного признака (у1, у2,.... уn); Х— матрица размерности п х (k + 1) наблюдаемых значений аргументов, элемент матрицы х,, рассматривается как неслучайная величина (i = 1, 2, ..., n; j=0,1, ...,k; x0i, = 1); β — вектор-столбец размерности (k + 1) х 1 неизвестных, подлежащих оценке параметров модели (коэффициентов регрессии); ε — случайный вектор-столбец размерности п х 1 ошибок наблюдений (остатков). Компоненты вектора εi не зависимы друг от друга, имеют нормальный закон распределения с нулевым математическим ожиданием (Mεi = 0) и неизвестной постоянной σ2 (Dεi = σ2).
На практике рекомендуется, чтобы значение п превышалоk неменее чем в три раза.
В модели (53.9)
В первом столбце матрицы Х указываются единицы при наличии свободного члена в модели (53.8). Здесь предполагается, что существует переменная x0, которая во всех наблюдениях принимает значения, равные единице.
Основная задача регрессионного анализа заключается в нахождении по выборке объемом п оценки неизвестных коэффициентов регрессии β0, β1, …, βk модели (53.8) или вектора β в (53.9).
Так как в регрессионном анализе хj рассматриваются как неслучайные величины, aMεi = 0, то согласно (53.8) уравнение регрессии имеет вид
(53.10)
длявсех i = 1, 2, ..., п, или в матричной форме:
(53.11)
где — вектор-столбец с элементами 1..., i,..., n.
Для оценки вектора-столбца β наиболее часто используют метод наименьших квадратов, согласно которому в качестве оценки принимают вектор-столбец b, который минимизирует сумму квадратов отклонений наблюдаемых значений уi от модельных значений i, т.е. квадратичную форму:
где символом «Т» обозначена транспонированная матрица.
Наблюдаемые и модельные значения результативного признака у показаны на рис. 53.1.
Рис. 53.1. Наблюдаемые и модельные значения результативного признака у
Дифференцируя, с учетом (53.11) и (53.10), квадратичную форму Q по β0, β1, …, βk и приравнивая частные производные к нулю, получим систему нормальных уравнений
решая которую получим вектор-столбец оценок b, где b = (b0, b1, ..., bk)T. Согласно методу наименьших квадратов, вектор-столбец оценок коэффициентов регрессии получается по формуле
(53.12)
ХT — транспонированная матрица X;
(ХTХ)-1 — матрица, обратная матрице ХTХ.
Зная вектор-столбец b оценок коэффициентов регрессии, найдем оценку уравнения регрессии
(53.13)
или в матричном виде:
Оценка ковариационной матрицы вектора коэффициентов регрессии b определяется выражением
(53.14)
где
(53.15)
Учитывая, что на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов регрессии, имеем
(53.16)
Значимость уравнения регрессии, т.е. гипотеза Н0: β = 0 (β0,= β1 = βk = 0), проверяется по F-критерию, наблюдаемое значение которого определяется по формуле
(53.17)
По таблице F-распределения для заданных α, v 1 = k + l,v2 = n – k - l находят Fкр.
Гипотеза H0 отклоняется с вероятностьюα, если Fнабл > Fкр. Из этого следует, что уравнение является значимым, т.е. хотя бы один из коэффициентов регрессии отличен от нуля.
Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотезы Н0: βj = 0, где j = 1, 2, ..., k, используют t-критерий и вычисляют tнабл(bj) = bj / bj. По таблице t-распределения для заданного α и v = п - k - 1 находят tкр.
Гипотеза H0 отвергается с вероятностью α, если tнабл > tкр. Из этого следует, что соответствующий коэффициент регрессии βj значим, т.е. βj ≠ 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. Тогда реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначительных переменных, которой соответствует минимальное по абсолютной величине значение tнабл. После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.
Существуют и другие алгоритмы пошагового регрессионного анализа, например с последовательным включением факторов.
Наряду с точечными оценками bj генеральных коэффициентов регрессии βj регрессионный анализ позволяет получать и интервальные оценки последних с доверительной вероятностью γ.
Интервальная оценка с доверительной вероятностью γ для параметра βj имеет вид
(53.19)
где tα находят по таблице t-распределения при вероятности α = 1 - γ и числе степеней свободы v = п - k - 1.
Интервальная оценка для уравнения регрессии в точке, определяемой вектором-столбцом начальных условий X0 = (1, x , x ,,..., x )T записывается в виде
(53.20)
Интервал предсказания n+1 с доверительной вероятностью у определяется как
(53.21)
где tα определяется по таблице t-распределения при α = 1 - γ и числе степеней свободы v = п - k - 1.
По мере удаления вектора начальных условий х0 от вектора средних ширина доверительного интервала при заданном значении γ будет увеличиваться (рис. 53.2), где = (1, ).
Рис. 53.2. Точечная и интервальная оценки уравнения регрессии .
Мультиколлинеарность
Одним из основных препятствий эффективного применения множественного регрессионного анализа является мультиколлинеарность. Она связана с линейной зависимостью между аргументами х1, х2, ..., хk. В результате мультиколлинеарности матрица парных коэффициентов корреляции и матрица (XTX) становятся слабообусловленными, т.е.ихопределители близки к нулю.
Это приводит к неустойчивости оценок коэффициентов регрессии (53.12), завышению дисперсии s , оценок этих коэффициентов (53.14), так как в их выражения входит обратная матрица (XTX)-1, получение которой связано с делением на определитель матрицы (ХTХ). Отсюда следуют заниженные значения t(bj). Кроме того, мультиколлинеарность приводит к завышению значения множественного коэффициента корреляции.
На практике о наличии мультиколлинеарности обычно судят по матрице парных коэффициентов корреляции. Если один из элементов матрицы R больше 0,8, т.е. | rjl | > 0,8, то считают, что имеет место мультиколлинеарность, и в уравнение регрессии следует включать один из показателей — хj или xl.
Чтобы избавиться от этого негативного явления, обычно используют алгоритм пошагового регрессионного анализа или строят уравнение регрессии на главных компонентах.
Пример. Построение регрессионного уравнения
Согласно данным двадцати (п = 20) сельскохозяйственных районов, требуется построить регрессионную модель урожайности на основе следующих показателей:
у — урожайность зерновых культур (ц/га);
x1 — число колесных тракторов (приведенной мощности) на 100 га;
х2 — число зерноуборочных комбайнов на 100 га;
х3 — число орудий поверхностной обработки почвы на 100га;
x4 — количество удобрений, расходуемых на гектар;
х5 — количество химических средств оздоровления растений, расходуемых на гектар.
Исходные данные для анализа приведены в табл. 53.1.
Таблица 53.1