Разверткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью.

Так как все грани многогранной поверхности изображаются на развертке в натуральную величину, построение ее сводится к определению величины отдельных граней поверхности – плоских многоугольников.

Существует три способа построения развертки многогранных поверхностей:

1. Способ нормального сечения;

2. Способ раскатки;

3. Способ треугольника.

Пример 1. Развертка пирамиды (рис. 8.40).

Рисунок 8.40. Пирамида и её развертка

При построении развертки пирамида применяется способ треугольника. Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников – граней пирамиды и многоугольника - основания. Поэтому построение развертки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трем сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину ребер и сторон основания.

  Рисунок 8.41. Определение истинной величины основания и ребер пирамиды

 

Алгоритм построения можно сформулировать следующим образом (рис. 8.41): 1. Определяют натуральную величину основания пирамиды (например методом замены плоскостей проекций); 2. Определяют истинную величину всех ребер пирамиды любым из известных способов (в данном примере натуральная величина всех ребер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S); 3. Строят основание пирамиды и по найденным трем сторонам строят какую-либо из боковых граней, пристраивая к ней следующие (рис.8.42). Точки, расположенные внутри контура развертки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех ребер, по которым многогранник разрезан, на развертке соответствуют две точки, принадлежащие контуру развертки. Примером первой точки на рисунках служит точка К0 и КÎSАD, а иллюстрацией второго случая являются точки М0 и М0*. Для определения точки К0 на развертке пришлось по ее ортогональным проекциям найти длины отрезков АМ ( метод замены плоскостей проекций) и (метод вращения). Эти отрезки были использованы затем при построении на развертке сначала прямой S0М0 и, наконец, точки К0.
  Рисунок 8.42. Построение развертки пирамиды
     

 

Пример 2. Развертка призмы (рис.8.43).

  Рисунок 8.43. Развертка призмы способом нормального сечения

В общем случае развертка призмы выполняется следующим образом. Преобразуют эпюр так, чтобы ребра призмы стали параллельны новой плоскости проекций. Тогда на эту плоскость ребра проецируются в натуральную величину.

Пересекая призму вспомогательной плоскостью α, перпендикулярной ее боковым ребрам (способ нормального сечения), строят проекции фигуры нормального сечения – треугольника 1, 2, 3, а затем определяют истинную величину этого сечения. На примере она найдена методом вращения.

В дальнейшем строям отрезок 10-10*, равный периметру нормального сечения. Через точки 10, 20, 30 и 10* проводят прямые, перпендикулярные 10-10*, на которых откладывают соответствующие отрезки боковых ребер призмы, беря их с новой фронтальной проекции. Так, на перпендикуляре, проходящем через точку 10, отложены отрезки 10D0=14D4 и 10А0=14А4.

Соединив концы отложенных отрезков, получают развертку боковой поверхности призмы. Затем достраивают основание.

Пример 3. Развертка призмы, частный случай, когда основание призмы на одну из плоскостей проекций проецируется в натуральную величину (рис. 8.44).

  Рисунок 8.44. Развертка призмы способом раскатки

Развертка боковой поверхности такой призмы осуществляется способом раскатки. Этот способ заключается в следующем. Сначала, как и в предыдущем примере, преобразуют эпюр так, чтобы боковые ребра призмы стали параллельны одной из плоскостей проекций.

Затем новую проекцию призмы вращают вокруг ребра С4F4 до тех пор пока грань ACDF не станет параллельной плоскости П4. При этом положение ребра С4F4 остается неизменным, а точки принадлежащие ребру AD перемещаются по окружностям, радиус которых определяется натуральной величиной отрезков AC и DF (так как основания призмы параллельны П1 то на эту плоскость проекций они проецируются без искажения т.е. R=A1C1=D1F1), расположенных в плоскостях, перпендикулярных ребру С4F4. Таким образом, траектории движения точек A и D на плоскость П4 проецируются в прямые, перпендикулярные ребру С4F4.

Когда грань ACDFстанет параллельна плоскости П4, она проецируется на неё без искажения т.е. вершины A и D окажутся удаленными от неподвижных вершин C и F на расстояние, равное натуральной величине отрезков AC и DF. Таким образом, засекая перпендикуляры, по которым перемещаются точки A4 и D4 дугой радиуса R=A1C1=D1F1, можно получить искомое положение точек развертки A0 и D0.

Следующую грань АBDE вращают вокруг ребра AD. На перпендикулярах, по которым перемещаются точки B4и E4 делают засечки из точек A0 и D0 дугой радиуса R=A1B1=D1E1. Аналогично строится развертка последней боковой грани призмы.

Процесс последовательного нахождения граней призмы вращением вокруг ребер можно представить как раскатку призмы на плоскость параллельную П4 и проходящую через ребро С4F4.

Построение на развертке точки К, принадлежащей боковой грани АBDE, ясно из рисунка. Предварительно через эту точку по грани провели прямую , параллельную боковым ребрам, которая затем построена на развертке.

 

  Развертка цилиндрической поверхности

Развертка цилиндрической поверхности выполняется аналогично развертке призмы. Предварительно в заданный цилиндр вписывают n-угольную призму (рис.8.45). Чем больше углов в призме, тем точнее развертка ( приn →∞призма преобразуется в цилиндр).

  Рисунок 8.45. Развертка цилиндрической поверхности

 

  Развертка конической поверхности

Развертка конической поверхности выполняется аналогично развертке пирамиды, предварительно вписав в конус n-угольную пирамиду (рис.8.46).

  Рисунок 8.46. Развертка конической поверхности

Если задана поверхность прямого конуса, то развертка его боковой поверхности представляет круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ=360о r / l, где r – радиус окружности основания конуса.

 

  Плоскость касательная к поверхности

Касательные плоскости играют большую роль в геометрии. В теоретическом плане плоскости, касательные к поверхности, используются в дифференциальной геометрии при изучении свойств поверхности в районе точки касания.

Решение задач, возникающих при проектировании и конструировании поверхностей-оболочек, требует проведения касательных плоскостей и нормалей к поверхности. При построении на проекционном чертеже очерков поверхностей по заданному направлению проецирования, при определении контуров собственных теней также необходимо строить касательные плоскости к поверхности. Построение касательной плоскости к поверхности представляет частный случай пересечения поверхности плоскостью.

Плоскость, касательная к поверхности, имеет общую с этой поверхностью точку, прямую или плоскую кривую линию. Плоскость в одном месте может касаться поверхности, а в другом пересекать эту поверхность. Линия касания может одновременно являться и линией пересечения поверхности плоскостью. Плоскость α (рис.8.47), представленную двумя касательными, проведенными в точке А поверхности Ф, называется касательной плоскостью к поверхности в данной ее точке. Любая кривая поверхности проходящая через точку А, имеет в этой точке касательную прямую, принадлежащую плоскости α. Не в каждой точке поверхности можно провести касательную плоскость. В некоторых точках касательная плоскость не может быть определена или не является единственной. Такие точки называются особыми точками поверхностей, например вершина конической поверхности. Прямую линию, проходящую через точку касания и перпендикулярную касательной плоскости, называют нормалью поверхности в данной точке.
Рисунок 8.47. Плоскость, касательная к поверхности

В зависимости от вида поверхности, касательная плоскость может иметь с поверхностью как одну общую точку, так и множество точек. В зависимости от того, с каким случаем касания, мы имеем дело, точки, принадлежащие поверхности подразделяют на эллиптические, параболические и гиперболические:

1. Если касательная плоскость имеет с поверхностью только одну общую точку, то все принадлежащие поверхности линии, проходящие через эту точку, будут расположены по одну сторону от касательной плоскости (рис.8.47). Такие точки называются эллиптическими.

2. В случае проведения касательной плоскости к торсовой поверхности, образованной непрерывным перемещением касательной прямой к некоторой пространственной кривой линии (частный случай - коническая поверхность), плоскость будет касаться поверхности по прямой линии – образующей. Точки, принадлежащие этой образующей, называются параболическими (рис.8.48).

3. Точки поверхности, касательная плоскость, к которым пересекает поверхность, называют гиперболическими (рис.8.49). Гиперболическая точка принадлежит линии, по которой касательная плоскость пересекает поверхность.

Рисунок 8.48. Параболические точки касания Рисунок 8.49. Гиперболические точки касания

 

    Задание касательной плоскости на эпюре Монжа

 

Так как плоскость однозначно определяется двумя пересекающимися прямыми, то для построения касательной плоскости к поверхности в данной точке, достаточно через эту точку провести две линии принадлежащие поверхности и к каждой из них провести касательные в заданной точке. Касательной прямой к поверхности называется прямая, касательная к какой-либо кривой принадлежащей поверхности. Рассмотрим на примере (рис.8.50) построение касательной плоскости к параболоиду вращения Ф в точке М. Для решения этой задачи через точку М проведем две кривые плоские линии n и m принадлежащие поверхности Ф. Линия n - окружность, лежащая в горизонтальной плоскости уровня проведенной через точку М, линия m – парабола, лежащая в горизонтально проецирующей плоскости проведенной через вершину параболоида и точку М. Чтобы построить касательную плоскость достаточно провести к данным линиям касательные. Касательная к плоской кривой линии лежит в одной плоскости с ней. Так как линия n лежит в горизонтальной плоскости то на плоскость П1 она проецируется в натуральную величину n1, что позволяет сразу построить горизонтальную проекцию касательной к ней t11. На плоскость П2 - окружность проецируется в прямую n2, а фронтальная проекция касательной t21 будет с ней совпадать. Линия m лежит в горизонтально проецирующей плоскость, поэтому её горизонтальная проекция m1 – прямая, определяющая и горизонтальную проекцию касательной t12.
  Рисунок 8.50. Построение касательной плоскости к параболоиду вращения
     

На плоскость П2 парабола проецируется с искажением m2, поэтому для построения касательной, повернем поверхность Ф вокруг оси, до совмещения плоскости параболы с фронтальной плоскостью проекций, проекция точки М2при этом переместиться в положение точки М2*.

Через эту точку проведем касательную t22* к очерку параболоида. И обратным вращением находим проекцию касательной t22.

Две пересекающиеся в точке М2 прямые t21 и t22 определяют положение фронтальной проекции касательной плоскости α2, а прямые t11 и t12 – горизонтальную проекцию касательной плоскость α1.

Таким образом на эпюре получена плоскость α касательная к поверхности параболоида вращения в точке М.

 

  Поверхность касательная к поверхности

Две поверхности могут соприкасаться одна с другой в точке (рис.8.51), по прямой (рис.8.52) или по кривой линии (рис.8.53). Соприкасание может быть внешнее (рис.8.51) или внутреннее (рис.8.53).

Рисунок 8.51.Внешнее касание шара и конуса Рисунок 8.52. Касание цилиндра и конуса
Соприкасание поверхностей 2-го порядка можно рассматривать как частный случай их пересечения. При этом справедливо следующее положение: если биквадратная кривая линия пересечения двух поверхностей второго порядка распадается на пару совпавших кривых 2-го порядка или на четыре совпавшие прямые, то имеется касание поверхностей по линии 2-го или 1-го порядка соответственно. Отметим без доказательства следующие следствия частных случаев касания поверхностей второго порядка: 1. Если две поверхности 2-го порядка касаются в трех точках, то они соприкасаются по кривой 2-го порядка; 2. Если две поверхности 2-го порядка касаются друг друга по кривой линии, то эта линия является кривой 2-го порядка; 3. Если две поверхности 2-го порядка описаны около третьей поверхности 2-го порядка (или вписаны в неё), то они пересекаются по линии, распадающейся на две кривые 2-го порядка (теорема Монжа).  
Рисунок 8.53. Внутреннее касание шара и конуса

 


Лекция № 9

Аксонометрические проекции. Стандартные аксонометрические проекции.
Основная теорема аксонометрии (теорема Польке). Окружность в аксонометрии.
Построение аксонометрических изображений.

  Аксонометрические проекции

Аксонометрические изображения широко применяются благодаря хорошей наглядности и простоте построений.

Слово «аксонометрия» в переводе с греческого означает измерение по осям. Аксонометрический метод может сочетаться и с параллельным, и с центральным проецированием при условии, что предмет проецируется вместе с координатной системой.

Сущность метода параллельного аксонометрического проецирования заключается в том, что предмет относят к некоторой системе координат и затем проецируют параллельными лучами на плоскость вместе с координатной системой.

На рисунке 9.1 показана точка А, отнесенная к системе прямоугольных координат xyz. Вектор S определяет направление проецирования на плоскость проекций П*. Аксонометрическую проекцию А1* горизонтальной проекции точки А принято называть вторичной проекцией. Искажение отрезков осей координат при их проецировании на П' характеризуется так называемым коэффициентом искажения. Коэффициентом искажения называется отношение длинны проекции отрезка оси на картине к его истинной длине. Так по оси x*коэффициент искажения составляет u=0*x*/0x, а по оси y* и z* соответственно υ=0*y*/0y и ω=0*z*/0z. В зависимости от отношения коэффициентов искажения аксонометрические проекции могут быть: Изометрическими, если коэффициенты искажения по всем трем осям равны между собой; в этом случае u=υ=ω;
  Рисунок 9.1. Сущность метода аксонометрического проецирования

Диметрическими, если коэффициенты искажения по двум любым осям равны между собой, а по третьей – отличается от первых двух;

Триметрическими, если все три коэффициента искажения по осям различны.

Аксонометрические проекции различаются также и по тому углу φ, который образуется проецирующим лучом с плоскостью проекций. Если φ≠ 90o, то аксонометрическая проекция называется косоугольной, а если φ= 90o – прямоугольной.

    Основная теорема аксонометрии (теорема Польке)

Рассмотрев общие сведения об аксонометрических проекциях, можно сделать следующие выводы:

- аксонометрические чертежи обратимы;