Постулаты Специальной Теории Относительности (СТО)
Декремент затухания
ДЕКРЕМЕНТ ЗАТУХАНИЯ (от лат. decrementum - уменьшение, убыль) (логарифмический декремент затухания) - количественная характеристика быстроты затухания колебаний в линейной системе; представляет собой натуральный логарифм отношения двух последующих максимальных отклонений колеблющейся величины в одну и ту же сторону. T. к. в линейной системе колеблющаяся величина изменяется по закону (где постоянная величина - коэф. затухания) и два последующих наиб. отклонения в одну сторону X1 и X2 (условно наз. "амплитудами" колебаний) разделены промежутком времени (условно наз. "периодом" колебаний), то , а Д. з. .
Так, напр., для механич. колебат. системы, состоящей из массы т, удерживаемой в положении равновесия пружиной с коэф. упругости k и испытывающей трение силой FT, пропорциональной скорости v (FТ =-bv, где b - коэф. пропорциональности), Д. з.
При малом затухании . Аналогично для электрич. контура, состоящего из индуктивности L, активного сопротивления R и ёмкости С, Д. з.
.
При малом затухании .
Для нелинейных систем закон затухания колебаний отличен от закона , т. е. отношение двух последующих "амплитуд" (и логарифм этого отношения) не остаётся постоянным; поэтому Д. з. не имеет такого определ. смысла, как для систем линейных.
Добротность — характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.
Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.
Общая формула для добротности любой колебательной системы:
,
где:
· — резонансная частота колебаний
· — энергия, запасённая в колебательной системе
· — рассеиваемая мощность.
Например, в электрической резонансной цепи энергия рассеивается из-за конечного сопротивления цепи, в кварцевом кристалле затухание колебаний обусловлено внутренним трением в кристалле, в объемных электромагнитных резонаторах теряется в стенках резонатора, в его материале и в элементах связи, в оптических резонаторах — на зеркалах.
Для Колебательного контура в RLC цепях:
,
где , и — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.
Для электрической цепи гораздо проще измерить амплитуду (ток или напряжение), чем энергию или мощность. Поскольку мощность и энергия пропорциональны квадрату амплитуды осцилляции, полоса на АЧХ будет от пика (примерно 3 дБ, а 1/2 это 6 дБ). Поэтому чаще используется другое эквивалентное определение добротности, которое связывает ширину амплитудной резонансной кривой по уровню с круговой частотой резонанса :
,
где: — коэффициент затухания, равный полуширине резонансной кривой, — число колебаний за время релаксации.
15. Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.
Резонанс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:
,
где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
Резонансные явления могут вызвать необратимые разрушения в различных механических системах.
В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.
Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её
Постулаты Специальной Теории Относительности (СТО)
Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями ( << c). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени t, одинакового во всех системах отсчета. В основе классической механики лежит механический принцип относительности(или принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета.Этот принцип означает, что законы динамики инвариантны (то есть неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). В частном случае, когда система K' движется со скоростью вдоль положительного направления оси x системы K (рис. 7.1.1), преобразования Галилея имеют вид:
|
Предполагается, что в начальный момент оси координат обеих систем совпадают.
1 |
Рисунок 7.1.1. Две инерциальные системы отсчета K и K'. |
Из преобразований Галилея следует классический закон преобразования скоростейпри переходе от одной системы отсчета к другой:
|
Ускорения тела во всех инерциальных системах оказываются одинаковыми:
|
Следовательно, уравнение движения классической механики (второй закон Ньютона) не меняет своего вида при переходе от одной инерциальной системы к другой.
К концу XIX века начали накапливаться опытные факты, которые вступили в противоречие с законами классической механики. Большие затруднения возникли при попытках применить механику Ньютона к объяснению распространения света. Предположение о том, что свет распространяется в особой среде – эфире, было опровергнуто многочисленными экспериментами. А. Майкельсон в 1881 году, а затем в 1887 году совместно с Э. Морли (оба – американские физики) пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью интерференционного опыта. Упрощенная схема опыта Майкельсона–Морли представлена на рис. 7.1.2.
2 |
Рисунок 7.1.2. Упрощенная схема интерференционного опыта Майкельсона–Морли. – орбитальная скорость Земли. |
В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли ( = 30 км/с). Затем прибор поворачивался на 90°, и второе плечо оказывалось ориентированным по направлению орбитальной скорости. Расчеты показывали, что если бы неподвижный эфир существовал, то при повороте прибора интерференционные полосы должны были сместиться на расстояние, пропорциональное ( / c)2. Опыт Майкельсона–Морли, неоднократно повторенный впоследствии со все более возрастающей точностью, дал отрицательный результат. Анализ результатов опыта Майкельсона–Морли и ряда других экспериментов позволил сделать вывод о том, что представления об эфире как среде, в которой распространяются световые волны, ошибочно. Следовательно, для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не оказывает влияния на оптические явления на Земле.
Исключительную роль в развитии представлений о пространстве и времени сыграла теория Максвелла. К началу XX века эта теория стала общепризнанной. Предсказанные теорией Максвелла электромагнитные волны, распространяющиеся с конечной скоростью, уже нашли практическое применение – в 1895 году было изобретено радио (А. С. Попов). Но из теории Максвелла следовало, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета имеет одно и то же значение, равное скорости света в вакууме. Отсюда следует, что уравнения, описывающие распространение электромагнитных волн, не инвариантны относительно преобразований Галилея. Если электромагнитная волна (в частности, свет) распространяется в системе отсчета K' (рис. 7.1.1) в положительном направлении оси x', то в системе K свет должен, согласно галилеевской кинематике распространяться со скоростью c + , а не c.
Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Выход был найден Эйнштейном ценой отказа от классических представлений о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными, то есть не зависящими от системы отсчета, в эйнштейновской теории относительности переведены в разряд относительных.
Так как все физические явления происходят в пространстве и во времени, новая концепция пространственно-временных закономерностей не могла не затронуть в итоге всю физику.
В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.
1. Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.
2. Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.
Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.
Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t = 0, когда координатные оси двух инерциальных систем K и K' совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние t, а сферический волновой фронт в каждой системе будет иметь радиус ct (рис. 7.1.3), так как системы равноправны и в каждой из них скорость света равна c.
3 |
Рисунок 7.1.3. Кажущееся противоречие постулатов СТО. |
С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K' он будет находиться в точке O'. Следовательно, центр сферического фронта одновременно находится в двух разных точках!
Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t = t'. Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях ( << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.
16.
Группа Лоренца является группой преобразований Лоренца пространства Минковского, сохраняющих начало координат (то есть являющихся линейными операторами). [1] В математике обозначается .
Специальная группа Лоренца — подгруппа преобразований, определитель матрицы которых равен 1 (в общем случае он равен ).
Ортохронная группа Лоренца , специальная ортохронная группа Лоренца — аналогично, но все преобразования сохраняют направление будущего во времени (знак координаты ). Группа , единственная из четырёх, является связной и изоморфна группе Мёбиуса.
Пространство Минковского четырёхмерное псевдоевклидово пространство сигнатуры , предложенное в качестве геометрической интерпретации пространства-времени специальной теории относительности.
Каждому событию соответствует точка пространства Минковского, в лоренцевых (или галилеевых) координатах, три координаты которой представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая координату , где скорость света, время события. Связь между пространственными расстояниями и промежутками времени, разделяющими события, характеризуется квадратом интервала:
(Нередко в качестве квадрата интервала берется противоположная величина, выбор знака — вопрос произвольного соглашения. Так, первоначально сам Минковский предложил именно противоположный знак для квадрата интервала).
Интервал в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замене одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве. Роль, аналогичную роли вращений координат в случае евклидова пространства, играют для пространства Минковского преобразования Лоренца.
Квадрат интервала аналогичен квадрату расстояния в евклидовом пространстве. В отличие от последнего квадрат интервала не всегда положителен, также между различными событиями интервал может быть равен нулю.
17. Эффекты специальной теории относительности.
Эффекты СТО
Пусть система отсчёта K' движется со скоростью V относительно системы отсчёта K0, соответственно, штрихованные величины относятся к K', а величины с индексом 0 — к K0. К наиболее распространённым эффектам СТО, также называемым релятивистскими эффектами, относят:
*Замедление времени
Время в движущейся системе отсчёта течёт медленнее
С этим эффектом связан так называемый парадокс близнецов.
*Сокращение линейных размеров
Линейные размеры тел в движущейся системе отсчёта сокращаются:
/для длины.
/ для объёма.
При этом сокращаются продольные размеры тела (то есть измеряемые вдоль направления движения). Поперечные размеры не изменяются.
Такое сокращение размеров ещё называют лоренцевым сокращением.
*О релятивистской массе
Релятивистская масса движущегося объекта больше массы покоя
и возрастает с увеличением скорости. «Утяжеление» следует понимать лишь условно, так как второй закон Ньютона в форме F = m'a всё равно не выполняется (направление ускорения в общем случае не совпадает с направлением силы).
В современной физической литературе по СТО, однако, принято, что m — масса частицы (инвариантная масса) не зависит от скорости, являясь инвариантом относительно преобразований Лоренца, и является величиной неаддитивной. Понятие «релятивистской массы» не используется и не рекомендуется к применению, хотя оно и встречается в ранних работах по теории относительности.