Непрерывные случайные величины
Определение 2: Распределение случайной величины называется непрерывным, а сама случайная величина - непрерывной случайной величиной, если для любого
,
где - интегрируемая по Лебегу функция. Функция
называется плотностью распределения случайной величины
.
Теорема 1: Для того чтобы случайная величина была непрерывной случайной величиной, необходимо и достаточно, чтобы для любого
(1)
Замечание 1: Из представления (1) видно, что функция распределения непрерывной случайной величины является непрерывной функцией.
Свойства плотности распределения:
1)
2) почти всюду.
3) для любых х, являющихся точками непрерывности плотности.
Теорема 2: Для того, чтобы функция p = p(x) была плотностью распределения некоторой случайной величины , необходимо и достаточно, чтобы она удовлетворяла свойствам 1) и 2) плотности.
Примеры непрерывных случайных величин:
1) нормальная непрерывная случайная величина, или непрерывная случайная величина Гаусса(нормальное распределение). Непрерывная случайная величина имеет нормальное (гауссовское) распределение, если её плотность распределения имеет вид
Если , то распределение называется стандартным нормальным распределением.
Важная роль этого распределения объясняется тем, что оно обычно возникает в явлениях, подверженных действию большого числа малых случайных величин. Так, математическая теория выборочного метода в статистике для расчета некоторых показателей широко использует нормальное распределение.
2)экспоненциальная (показательная) непрерывная случайная величина(экспоненциальное распределение). Непрерывная случайная величина имеет экспоненциальное(показательное) распределение с параметром
, если её плотность имеет вид
Экспоненциальному распределению подчиняется время распада ядер атомов различных элементов. Оно обладает важным свойством - отсутствием последствия. Несложно убедиться в том, что вероятность распада ядра за время при условии, что перед этим оно уже прожило время
, совпадает с безусловной вероятностью распада того же самого ядра за время
. Именно это свойство и представляет собой отсутствие последствия.
3) Равномерная на [a;b] непрерывная случайная величина(равномерное на отрезке [a;b] распределение).
Равномерно распределенная на отрезке [a;b] непрерывная случайная величина имеет плотность распределения
Равномерное распределение реализует принцип геометрической вероятности при бросании точки на отрезок [a;b].