Электронные вольтметры постоянного напряжения
Чувствительность прибора выражается отношением перемещения указателя к соответствующему изменению измеряемой величины. Если чувствительность выражается числом делений на единицу измеряемой величины, то цена прибора и постоянная прибора совпадают.
Вариация прибора – это вариация показаний в данной точке шкалы, которые определяются экспериментально как наибольшая по абсолютной величине разность показаний при возрастающих и убывающих значениях измеряемой величины. Вариация показаний не должна превышать удвоенной погрешности прибора.
ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ ПЕРЕМЕННОГО
НАПРЯЖЕНИЯ В ПОСТОЯННОЕ
Наиболее широко применяемыми измерительными преобразователями этого типа являются выпрямительные и термоэлектрические. Выпрямительные преобразователи используют выпрямление (детектирование) переменного тока с помощью нелинейных элементов – вакуумных и полупроводниковых диодов (детекторов).
Термоэлектрические измерительные преобразователи используют нагрев переменным током горячего спая термопары, возникновение термо-ЭДС и постоянного тока в цепи термопары.
Переменное напряжение характеризуется следующими основными параметрами:
Пиковое значение Um (для гармонического колебания – амплитудное) – это наибольшее мгновенное значение напряжения u(t) за время измерения t (или за период Т). Если напряжение за время измерения или период изменяет знак, а кривая напряжения несимметрична, то различают положительные и отрицательные пиковые значения.
Среднее значение за время измерения (или за период) – это постоянная составляющая напряжения u(t):
Средневыпрямленное значение (СВЗ) – среднее значение абсолютного значения напряжения:
Среднеквадратическое значение (СКЗ) – это положительный корень квадратный из среднего значения квадрата напряжения:
Совокупность значений переменного напряжения является интегральной характеристикой его формы. В практике измерений для оценок используют коэффициенты формы kф, амплитуды kа, усреднения kу (таблица): kф =U/Uсвз, ka=Um/Uскз, ky= kф ka=Um/ Uсвз.
Таблица. Коэффициенты ka, kф, ky для напряжений различной формы
Напряжение | ka | kф | ky |
Синусоидальное | 1,41 | 1,11 | 1,56 |
Однополярное пилообразное | 1,73 | 1,16 | 2,00 |
Прямоугольной формы с симметричными полупериодами - меандр |
Коэффициенты kа, kф, ky позволяют получать значения переменного напряжения, если известно одно из них и форма напряжения.
Пиковые (амплитудные) детекторы. Пиковый детектор – это измерительный преобразователь, на выходе которого постоянная составляющая непосредственно соответствует пиковому значению напряжения на входе.
Принципиальные электрические схемы пиковых детекторов изображены на рис. 4.6,а – последовательный детектор с открытым входом и б – параллельный детектор с закрытым входом.
В пиковом детекторе с открытым входом постоянная составляющая выходного сигнала содержит постоянную составляющую входного сигнала, если таковая имеется. В детекторе же с закрытым входом постоянная составляющая выходного сигнала не содержит постоянной составляющей входного сигнала – для нее вход закрыт.
Пиковый детектор должен обязательно содержать элемент, запоминающий пиковое значение напряжения. Таким элементом обычно является конденсатор, заряжаемый до пикового значения через диод.
Остановимся на пиковом детекторе с открытым входом. Рассмотрим случай, когда на вход поступает синусоидальное напряжение.
В положительные полупериоды входного напряжения uвх происходит заряд конденсатора С через малое прямое сопротивление диода Rд и внутреннее сопротивление источника Ri. В отрицательные полупериоды конденсатор разряжается через большое сопротивление R (рис. 4.7,а). Постоянная времени разряда много больше постоянной времени заряда. Поэтому напряжение на конденсаторе возрастает и через несколько периодов на обкладках устанавливается постоянное напряжение UC (постоянная составляющая пульсирующего напряжения), почти равное амплитуде входного напряжения Um. Поскольку Uc все же несколько меньше Um вследствие разряда конденсатора во время отрицательного полупериода, то в течение времени, когда uвх>Uc, через диод будут проходить импульсы тока, пополняющие заряд конденсатора.
Если на вход схемы подать напряжение в котором содержится как переменная, так и постоянная составляющие, то, очевидно, конденсатор С зарядится до напряжения, определяемого суммой постоянной и амплитуды переменной составляющих, т. е. до пикового значения напряжения. Таким образом, на выходе пикового детектора с открытым входом имеет место постоянное напряжение Uc, учитывающее как переменную, так и постоянную составляющие на входе. Для исключения пульсаций выходного напряжения на выходе включается фильтр нижних частот.
Пиковый детектор с закрытым входом (рис. 4.6,б). В течение нескольких положительных полупериодов uвх конденсатор С заряжается через сопротивление диода RД, и внутреннее сопротивление источника Ri почти до амплитудного значения напряжения. Разряд происходит в отрицательные полупериоды через очень большое сопротивление R и внутреннее сопротивление источника Ri. Постоянная времени разряда намного больше постоянной времени заряда. Поэтому напряжение uс за время отрицательного полупериода изменится очень мало. Заряженный конденсатор можно рассматривать как источник постоянного напряжения UcUm. На резисторе выделяется пульсирующее напряжение. Среднее значение этого напряжения примерно равно Um. Измерить его с помощью магнитоэлектрического прибора затруднительно, поскольку на низких частотах заметно колеблется стрелка. В связи с этим напряжение uR сначала подается на фильтр нижних частот, который пропускает постоянную составляющую UсUm, а затем измеряется вольтметром постоянного тока.
Входные активные сопротивления у детекторов соткрытым и закрытым входом не одинаковы:
Rвx откр=R/2, а Rвx закр=R/3.
Детектор среднеквадратического значения
Детектор среднеквадратического значения (СКЗ) – это измерительный преобразователь переменного напряжения в постоянное, пропорциональное квадрату СКЗ переменного напряжения. Измерение СКЗ напряжения связано с выполнением квадрирования, усреднения и извлечением квадратного корня [см. формулу]. Первые операции осуществляются детектором, а операция извлечения корня должна осуществляться градуировкой аналогового измерительного прибора, подключаемого к выходу детектора СКЗ. Таким образом, детектор СКЗ должен иметь квадратичную функцию преобразования, а сам нелинейный элемент квадратичную вольтамперную характеристику.
В качестве нелинейного элемента детектора, имеющего квадратичную вольтамперную характеристику (), можно, например, использовать начальный участок полупроводникового диода. Однако этот участок имеет очень малую протяженность. Полупроводниковые диоды имеют большой разброс параметров на этом участке характеристики. Поэтому большее распространение получили детекторы на основе диодной цепочки. Такая цепочка позволяет получить квадратичную в результате кусочно-линейной аппроксимации параболической кривой. Схема квадратичного преобразователя с диодной цепочкой показана на рис. 4.9.
Входное напряжение uВХ подводится к широкополосному трансформатору Т1. С помощью диодов VD1 и VD2 во вторичной обмотке осуществляется двухполупериодное выпрямление.
Выпрямленное напряжение действует на цепь, состоящую из диодной цепочки VD3...VD8, R3...R14 и резистора нагрузки R15. Падение напряжения на нагрузке через фильтр нижних частот 1 подается на выход преобразователя.
Выходное напряжение пропорционально среднему значению тока диодной ячейки. Диодная цепочка имеет близкую к параболической вольтамперную характеристику. Поэтому среднее значение выходного напряжения оказывается пропорциональным квадрату среднеквадратического значения входного напряжения.
Рассмотрим как обеспечивается квадратичная вольтамперная характеристика. Делители напряжения R3...R14 подключены к общему стабилизированному источнику напряжения Е. Делители подобраны так, что смещения Ui, подаваемые на диоды, удовлетворяют соотношению U1<U2<…<U6. Пока входное напряжение цепочки U не достигает U1 (см. график), все диоды закрыты и начальная часть является прямой линией с наклоном, зависящим от сопротивлений резисторов R1, R2 и R15. Когда напряжение U превысит U1, откроется диод VD3 и параллельно R2 подключится делитель R3, R9. Крутизна на участке от U1 до U2 возрастает, ток в цепи станет i=i0+i1 (рис. 4.10). Когда выполнится условие U>U2, в цепи преобразователя будет протекать ток i=i0+i1+i2. Крутизна будет увеличиваться с ростом U. Выбирая соответствующим образом сопротивления делителей, можно получить в виде ломаной линии, приближающейся к квадратичной параболе. Таким образом, квадратичная характеристика синтезируется из начальных участков характеристик ряда диодных ячеек, что показано на рис.
Коэффициент преобразования детектора по току Кд=I/U2, где I–среднее значение тока на выходе преобразователя; U–СКЗ входного напряжения.
Погрешность преобразования таких преобразователей определяется нестабильностью диодов, непостоянством сопротивлений резисторов и она составляет 3...5%. Частотный диапазон определяется свойствами трансформатора – индуктивностью (снизу) и паразитными параметрами диодной цепочки (сверху) и составляет интервал от нескольких герц до 1 МГц.
Детектор средневыпрямленного значения
Это измерительный преобразователь переменного напряжения в постоянный ток, пропорциональный средневыпрямленному значению входного сигнала (среднему значению модуля). Вольтамперная характеристика такого детектора должна иметь линейный участок в пределах диапазона входных напряжений. Примером подобного преобразователя может служить двухполупериодный выпрямитель с фильтром нижних частот. Наиболее распространенными являются мостовые схемы (рис. 4.11). В схеме рис. 4.11,а ток через диагональ моста протекает в одном и том же направлении в течение обоих полупериодов переменного напряжения. В положительный полупериод ток протекает по цепи: верхний входной зажим–диод VD1–диагональ моста – диод VD4– нижний входной зажим; в отрицательный: нижний зажим–диод VD3–диагональ моста – диод VD2–верхний зажим.
Рис. 4.11
Направление тока соответствует проводящему направлению указанных диодов. Характеристики реальных диодов не имеют строго линейного участка, как это требуется условиями преобразования. Ток, протекающий через диод при положительном значении входного напряжения iu/(Rд(U)+R), где Rд(U)–сопротивление открытого диода, зависящее от приложенного напряжения, R – сопротивление нагрузки.
Начальный участок характеристики близок к квадратичному. Поэтому будет иметь место погрешность, которая будет тем меньше, чем ближе к линейной будет характеристика диода.
Для улучшения линейности в диагональ моста последовательно с резистором R включают резистор Rдоб, сопротивление которого намного больше сопротивления открытого диода Rд(U). В этом случае
Зависимость прямого тока от напряжения будет близка к линейной. Уменьшение чувствительности, которое будет проявляться при включении Rдоб, можно компенсировать введением дополнительного усиления.
Схема рис. 4.11,б отличается от предыдущей тем, что вместо диодов VD3 и VD4 включены резисторы R1 и R2. В положительный полупериод напряжения ток протекает через диод VD1 и резистор R1. Через резистор R2 в этот полупериод ток не протекает, на его зажимах напряжение равно нулю. Поэтому, если в диагональ моста включить магнитоэлектрический вольтметр, он измеряет падение напряжения на R1. Очевидно, в отрицательный полупериод вольтметр измеряет падение напряжения на резисторе R2, поскольку через него и диод VD2 будет протекать ток.
Погрешность преобразования обусловлена, главным образом, нелинейностью диода и влиянием прямого сопротивления диода на ток, протекающий через выпрямительный мост.
ЛЕКЦИЯ 7. ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ
ОСОБЕННОСТИ ИЗМЕРЕНИЯ СИЛЫ ТОКА И НАПРЯЖЕНИЯ В РАДИОЭЛЕКТРОНИКЕ
Сила тока и напряжение являются важнейшими физическими величинами в электро- и радиотехнике. Они характеризуют интенсивность протекания электрического процесса. Единица силы тока – ампер является основной единицей Международной системы (СИ) и воспроизводится на постоянном токе с помощью первичного эталона. Среднеквадратическое отклонение результата измерения (СКО) составляет S=4·10-6, а неисключенный остаток систематической погрешности (НСП) не превышает =8·10-6. Единица напряжения – вольт является производной единицей, но в силу ее особой важности воспроизводится также с помощью первичного эталона со СКО S=5·10-8 и НСП =10-6. Передача размера единицы от эталона рабочим средствам измерения осуществляется на основе государственной поверочной схемы, предусматривающей ступени передачи.
В связи с необходимостью измерения тока и напряжения в широком диапазоне частот созданы специальные эталоны ампера и вольта на переменном токе, соответствующие поверочные схемы и образцовая аппаратура.
Измерения тока и напряжения проводят в диапазоне от постоянного тока до частот 1...2 ГГц. На более высоких частотах эти величины теряют свою однозначность, поскольку изменяют свое значение вдоль линии передачи и в ее поперечном сечении. Ток и напряжение на этих частотах измерять весьма сложно, поскольку очень велико влияние измерительной цепи на измеряемую цепь. По указанным причинам на СВЧ предпочитают измерять мощность, а не ток и напряжение.
В электрических цепях удобней измерять напряжение, а не ток, поскольку вольтметр подключают параллельно исследуемой цепи, и не приходится нарушать схему соединений. При измерении тока приходится разрывать цепь, что в ряде случаев приводит к большим искажениям процессов, протекающих в устройстве. В силу этих причин измерение силы тока производят на постоянном токе и переменном на частотах до 10 МГц.
КЛАССИФИКАЦИЯ ВОЛЬТМЕТРОВ
Измерители напряжения являются самой многочисленной группой среди средств измерения, применяемых в радиоэлектронике. В основу классификаций вольтметров положены следующие признаки.
1. Вид измеряемого напряжения: вольтметры постоянноготока(В2), переменного тока (В3), импульсного тока (В4), селективные (В6).
2. Тип применяемых измерительных преобразователей: электромеханические и электронные.
3. Тип отсчетного устройства:стрелочные (аналоговые) и цифровые вольтметры.
Парк аналоговых приборов характеризуется единой конструктивной базой, идентичностью расположения органов управления, удобством эксплуатации, метрологической обеспеченностью.
4. Тип структурной схемы: приборы прямого преобразования и уравновешивающего преобразования. Приборы уравновешивающего преобразования разделяют на приборы с автоматическим и ручным уравновешиванием.
5. Значение измеряемого напряжения: пиковое (амплитудное), среднеквадратическое и средневыпрямленное.
6. Частотный диапазон: низкочастотные, высокочастотные, сверхвысокочастотные, широкополосные вольтметры.
Структурные схемы и принцип действия электронных вольтметров
Обобщенная структурная схема вольтметра постоянного тока приведена на рис. 1,а. Она включает входное устройство, усилитель постоянного тока А1 и электромеханический измерительный прибор PV1. Входное устройство предназначено для создания высокого входного сопротивления, чтобы уменьшить влияние вольтметра на измеряемую цепь. Оно состоит из делителей напряжения – аттенюаторов, с их помощью изменяют пределы измеряемых величин. В некоторых вольтметрах входное устройство содержит эмиттерный повторитель (или истоковый – при использовании полевых транзисторов).
К УПТ предъявляются высокие требования: малый дрейф нуля, высокая стабильность усиления, малый уровень шумов.
В вольтметрах постоянного тока высокой чувствительности входной сигнал преобразуется в переменный, усиливается и затем вновь преобразуется в напряжение постоянного тока.
Обобщенная структурная схема вольтметра переменного тока показана на рис. 1,б. Принцип действия такого вольтметра состоит в преобразовании переменного напряжения в постоянное, которое измеряется стрелочным электромеханическим прибором. В качестве преобразователей переменного напряжения в постоянное используются пиковые (амплитудные) детекторы, детекторы среднеквадратического и средневыпрямленного значения напряжения. Применение того или иного преобразователя переменного тока в постоянный определяет способность вольтметра измерять то или иное значение напряжения.
На обобщенной схеме показаны усилитель переменного напряжения А1 и УПТ А2, включенный после преобразователя V1. Однако в практических приборах применение обоих усилителей встречается очень редко. Используется либо додетекторное усиление, либо последетекторное. В высокочувствительные измерители напряжения вводят усилители переменного напряжения, обычно широкополосные, с полосой пропускания от единиц герц до десятков мегагерц.
Для обеспечения широкой области рабочих частот вплотьдо 1 ГГц усилители переменного напряжения не применяют, а применяют усилители постоянного тока.
ЦИФРОВЫЕ ВОЛЬТМЕТРЫ
В цифровых вольтметрах переменного напряжения используется аналоговое преобразование измеряемого переменного напряжения в постоянное. В импульсных цифровых вольтметрах находят применение специальные АЦП – амплитудно-временные преобразователи. В вольтметрах с уравновешивающим преобразованием используются соответствующие АЦП.
Цифровые вольтметры прямого преобразования более просты по устройству, но имеют меньшую точность. По используемому способу аналого-цифрового преобразования они бывают: с временным, временным с интегрированием и частотным преобразованием. Интегрирующие цифровые вольтметры, измеряющие среднее значение напряжения за время измерения, обладают повышенной помехозащищенностью. Входное устройство (рис. 2) содержит делители напряжения и предназначено для расширения пределов измерения. Оно обеспечивает достаточно высокое входное сопротивление вольтметра. Устройство определения полярности измеряемого напряжения основано на определении последовательности срабатывания двух устройств сравнения. На первое подается пилообразное напряжение, принимающее значения от –U до +U, и измеряемое напряжение. Устройство срабатывает (выдает импульс) в момент равенства напряжений. Другое устройство сравнения срабатывает в момент равенства пилообразного напряжения нулю. Сигнал полярности подается в цифровое отсчетное устройство. Устройство автоматического выбора пределов измерения сравнивает измеряемое напряжение с набором напряжений и управляет делителем.
Цифровые вольтметры с уравновешивающим преобразованием строятся в основном по двум типам структурных схем: с использованием программирующего устройства и цифрового счетчика. В них измеряемое напряжение уравновешивается дискретно-изменяющимся компенсирующим образцовым напряжением. На рис. 3,а,б показаны эти структурные схемы.
Рассмотрим работу вольтметра, построенного по схеме с цифровым счетчиком (рис. 3,б). Тактовые импульсы поступают на цифровой счетчик через управляющее устройство, определяющее порядок заполнения ячеек. Счетчик изменяет состояние элементов преобразователя кода и компенсирующее напряжение. Измеряемое напряжение, поступающее на устройство сравнения, сравнивается с компенсирующим напряжением. В зависимости от знака этой разности на выходе устройства сравнения управляющее устройство либо продолжает пропускать тактовые импульсы на счетчик, либо нет. Новый цикл измерений начинается с момента сбрасывания на нуль показаний счетчика. В этот же момент в исходное состояние приводится компенсирующее напряжение и на счетчик начинают поступать счетные импульсы.
ЛЕКЦИЯ 8. ИЗМЕРЕНИЕ ПОСТОЯННЫХ НАПРЯЖЕНИЙ
Электронные вольтметры постоянного напряжения
На рисунке 1 представлена структурная схема электронного вольтметра постоянного напряжения, имеющего чувствительность единицы микровольт.
Усилитель постоянного тока (УПТ), входящий в состав вольтметра, должен иметь стабильный коэффициент усиления и малый дрейф выходного напряжения. Это достигается применением усилителей, выполненных по мостовым схемам. Дестабилизирующие факторы действуют на обе половины моста одинаково и не вызывают дополнительного разбаланса моста. Отрицательная обратная связь делает работу усилителя стабильной, а его характеристику линейной в широких пределах.
При высокой чувствительности вольтметров для устранения дрейфа используются УПТ с конвертированием постоянного напряжения в переменное, амплитуда которого пропорциональна постоянному напряжению. Они построены по принципу уравновешивающего преобразования и работают в режиме неполного уравновешивания.
Входное устройство А1 обычно содержит интегрирующий фильтр для уменьшения влияния переменной составляющей, присутствующей во входном сигнале. УПТ (рис. 1) выполнен по схеме с конвертированием. Измеряемое постоянное напряжение преобразуется в переменное напряжение прямоугольной формы. Для этой цели на входе УПТ часто применяется последовательно-параллельный ключ на полевых транзисторах. Управляющее напряжение имеет обычно частототу 400 Гц и вырабатывается мультивибратором (G), собранным на интегральной схеме и формируется с помощью дифференциальных усилителей.
Переменное напряжение усиливается усилителем А2 и выпрямляется синхронным детектором U2. Через эмиттерный повторитель постоянное напряжение подается на магнитоэлектрический микроамперметр Р1. Усилитель охватывается глубокой отрицательной обратной связью. Для переключения пределов измерения предусмотрен делитель в цепи обратной связи, который собирается на прецизионных постоянных резисторах, т.е. путем изменения коэффициента усиления усилителя. Синхронный детектор U2 работающий по принципу удвоения напряжения, синхронизирован по фазе с сигналом на входе усилителя А2. В схеме синхронного детектора также применяются полевые транзисторы.
Основная погрешность микровольтметра составляет 1,5...6,0%. Источниками погрешности являются:
- погрешность образцовой аппаратуры, по которой производится градуировка;
- погрешность градуировки;
- случайная погрешность стрелочного прибора;
- нестабильность канала преобразования;
- неравномерность шкалы;
- возникновение паразитных термо-ЭДС, обусловленных изменением температуры в пределах нормальной области;
- наличие собственных шумов (сказываются на нижних пределах измерения).
По указанной структурной схеме реализованы серийно выпускаемые микровольтметры В2-11, В2-15, В2-25.
В некоторых случаях требуются вольтметры постоянного напряжения с очень большим входным сопротивлением (1010–1016 Ом). Тогда применяют электрометрические лампы, сеточные токи которых не превышают 10-15 А, а сопротивление утечки входной сетки не менее 1016 Ом. Усиление постоянного напряжения осуществляется с использованием конвертирования. Примером такого прибора может служить серийный электрометр ВК2–16. В качестве преобразователя постоянного напряжения в переменное используется динамический конденсатор.
В электронных вольтметрах меньшей чувствительности вУПТвместо конвертирования применяются высокостабильные устройства с отрицательной обратной связью и операционные усилители.
Измерение переменных напряжений
Принцип работы электронного вольтметра переменного напряжения состоит в преобразовании переменного напряжения в постоянное, прямо пропорциональное соответствующему значению переменного напряжения, и измерении постоянного напряжения электромеханическим измерительным прибором либо цифровым вольтметром.
Измеряемое электронным вольтметром значение переменного напряжения определяется типом применяемого измерительного преобразователя переменного напряжения в постоянное. Рассмотрим устройство электронных вольтметров переменных напряжений, требования к отдельным элементам, особенности построения и их метрологические характеристики.
Вольтметры амплитудных значений
Отклонение указателя амплитудного вольтметра прямо пропорционально амплитудному (пиковому) значению переменного напряжения, независимоот формы кривой напряжения. Таким свойством не обладает ни одна из систем электромеханических измерительных приборов. В электронных вольтметрах амплитудного значения используются пиковые детекторы с открытым и закрытым входом.
Амплитудные вольтметры обладают большим диапазоном рабочих частот (от десятков герц до 1...2 ГГц) благодаря тому, что преобразование осуществляется непосредственно на входе прибора. Амплитудный детектор конструктивно размещается в выносном пробнике, благодаря чему удается уменьшить влияние паразитных параметров вольтметра, вывести резонансную частоту входной цепи за пределы диапазона частоты вольтметра.
Необходимая чувствительность (нижний предел измеряемых напряжений – единицы милливольт) достигается применением после детектора УПТ с большим коэффициентом усиления.
Нарис. 2 показана упрощенная структурная схема амплитудного вольтметра с закрытым входом, построенного по схеме уравновешивающего преобразования.
|
Измеряемое напряжение Ux подается через входное устройство на вход пикового детектора с закрытым входом (VD1, С1, R1). На идентичный детектор (VD2, С2, R2) подается компенсирующее напряжение с частотой около 100 кГц, сформированное в цепи обратной связи. Постоянные напряжения, равные амплитудным значениям измеряемого сигнала и компенсирующего напряжения сравниваются на резисторах R1,R2. Следует отметить, что при малых напряжениях детекторы будут работать в квадратичном режиме, что приведет к погрешности вольтметра амплитудного значения.
Разностное напряжение подается на УПТ A1 с высоким коэффициентом усиления. Если напряжение на выходе УПТ имеет положительную полярность, что свидетельствует о превышении напряжения сигнала над компенсирующим или об отсутствии последнего, запускается ранее запертый генератор-модулятор, и компенсирующее напряжение поступает через делитель обратной связи на детектор VD2, R2, С2. Генератор-модулятор представляет собой генератор, собранный по емкостной трехточечной схеме, усилитель и эмиттерный повторитель.
Превышение компенсирующего напряжения над измеряемым приводит к запиранию генератора-модулятора. Выходное напряжение с амплитудой, пропорциональной амплитуде измеряемого напряжения и частотой 100 кГц, подается на детектор средневыпрямленного напряжения U1 и измеряется магнитоэлектрическим вольтметром PV1.
Важным требованием является идентичность передаточных характеристик детекторов сигнала и компенсирующего напряжения. Только при одинаковых характеристиках равенство выходных напряжений детекторов будет свидетельствовать о равенстве входных напряжений.
В установившемся режиме на резисторах R1 и R2 образуется некоторая разность напряжений и равна
(1)
где К и – коэффициенты передачи цепи прямого преобразования и обратной связи.
В данной схеме в цепь прямого преобразования входят УПТ, генератор-модулятор, в цепь обратного – делитель в цепи обратной связи и детектор компенсирующего сигнала. Таким образом, для обеспечения высокой точности уравновешивания коэффициент усиления УПТ и генератора-модулятора должен быть достаточно высок.
Составляющими погрешности являются: погрешность образцовых средств при градуировке, случайная погрешность измерения постоянного напряжения магнитоэлектрическим прибором, погрешность, обусловленная нестабильностью коэффициента передачи цепи обратной связи и коэффициента передачи детектора средневыпрямленного значения, неидентичность характеристик детекторов, неуравновешенность схемы.
По подобной схеме работают выпускаемые промышленностью серийные амплитудные милливольтметры В3–6, В3–43. Основная погрешность на частотах до 30 МГц составляет 4...6%, на частотах до 1 ГГц – 25%. Шкалы амплитудных вольтметров градуируются в среднеквадратических значениях синусоидального напряжения. Недостатком является большая погрешность при измерении напряжений с большим уровнем гармонических составляющих.
ЛЕКЦИЯ 9 ВОЛЬТМЕТРЫ СРЕДНЕВЫПРЯМЛЕННЫХ И СРЕДНЕКВАДРАТИЧЕСКИХ ЗНАЧЕНИЙ
Вольтметры среднеквадратических значений
Измерение среднеквадратического значения переменного напряжения требует применения измерительного преобразователя переменного напряжения в постоянное, имеющего квадратичную характеристику. Тогда если это постоянное напряжение подать на магнитоэлектрический вольтметр, то его показания будут пропорциональны квадрату среднеквадратического значения. Если при градуировке шкалы провести операцию извлечения корня, то показания вольтметра будут пропорциональны среднеквадратическому значению.
Вольтметры СКЗ обеспечивают наиболее высокую точность при измерении СКЗ переменных напряжений, имеющих большое число гармоник. В основном в таких вольтметрах используется детектор с диодной цепочкой и термоэлектрический преобразователь. Детектор с диодной цепочкой обладает значительной нестабильностью параметров, обусловленной нестабильностями элементов. Снизу частотный диапазон ограничен свойствами трансформатора, а сверху паразитными параметрами цепочки, индуктивностью проводов, собственной емкостью и составляет 20 Гц...100 кГц. Для создания вольтметров общего применения такой диапазон узок.
Лучшие показатели в отношении частотного диапазонаимеюттермоэлектрические преобразователи. Однако они имеют малую чувствительность, что требует для обеспечения широкого частотного диапазона вольтметра широкополосного усилителя.
На рис. 1 показана структурная схема вольтметра СКЗ переменных напряжений с использованием термоэлектрических преобразователей.
В данной схеме используются два одинаковых термопреобразователя ВК1 и ВК2 с косвенным подогревом и включены встречно на входе УПТ. На нагреватель ЕК1 поступает усиленный измеряемый сигнал KшUx, (где Кш–коэффициент преобразования входной цепи и усилителя), а нагреватель ЕК2 подключен к выходу УПТ. Каждый из термопреобразователей имеет квадратичную характеристику, так что
(1)
где T – постоянная величина, характеризующая термопреобразователь;
– коэффициент обратной связи.
Подставив значения U1 и U2 в уравнение связывающее U1 и U2, получим
(2)
поскольку , то
Входное устройство обычно включает в себя истоковый повторитель и
Т-образные аттенюаторы на высокочастотных резисторах, переключением которых достигается изменение пределов измерения. Широкополосный усилитель переменного напряжения должен обеспечить стабильное усиление в полосе частот от 20 Гц до 50...60 МГц. Время измеренияиз-за инерционности термопреобразователей составляет 1...3 с.
Погрешность вольтметра включает следующие составляющие:
1. погрешность образцовой аппаратуры, по которой производится градуировка;
2. погрешность градуировки;
3. случайную составляющую погрешности стрелочного индикатора;
4. неидентичность термопар;
5. неравномерность частотной характеристики;
6. нестабильность элементов схемы.
Величина погрешности лежит в пределах 2,5...10% в диапазоне частот 20 Гц...50 МГц.Верхниезначения погрешности имеют место на краях частотного диапазона. По схеме, аналогичной рассмотренной, построены вольтметры среднеквадратических значений В3-45, В3-48, В3-42, В3-40, В3-46.
Вольтметры средневыпрямленных значений
Они обычно выполняются на основе двухполупериодных выпрямителей. Эти преобразователи в качестве нелинейного элемента содержат вакуумные или полупроводниковые диоды, не содержат накопительных емкостей и поэтому обладают бóльшим быстродействием по сравнению с пиковыми вольтметрами и вольтметрами среднеквадратического значения.
Чтобы детектор работал на линейном участке вольтамперной характеристики, на него необходимо подать сравнительно большой сигнал (0,1...0,3 В). Поэтому вольтметры СВЗ для обеспечения высокой чувствительности в широкой полосе частот должны иметь широкополосный усилитель переменного напряжения, которым также будет определяться качество вольтметра. На точность измерений в значительной мере будет влиять нелинейность вольтамперной характеристики, нестабильность параметров диодов усилителя и других элементов выпрямителя. Для уменьшения этих влияний схему обычно охватывают глубокой отрицательной обратной связью. На рис. 2 изображена функциональная схема электронного вольтметра средневыпрямленного значения.
Измеряемое напряжение поступает на входное устройство, которое обеспечивает высокое входное сопротивление вольтметра и расширение пределов измерения. Затем напряжение подается на вход широкополосного усилителя A1 и после усиления – на преобразователь переменного напряжения в постоянное. Схема охвачена глубокой отрицательной обратной связью, напряжение обратной связи снимается с резистора R3 и подается на вход усилителя 1. Благодаря обратной связи исключается влияние диодов на коэффициент преобразования преобразователя переменного напряжения в постоянное. Кроме того, улучшаются характеристики усилителя: уменьшается его нестабильность и нелинейность амплитудной характеристики. По схемам, подобным рассмотренной, построены серийные вольтметры В3-38, В3-39, В3-44
Современные вольтметры СВЗ обеспечивают измерение напряжений от десятых долей милливольта до сотен вольт в диапазоне частот 20 Гц...10 МГц. Основная погрешность составляет 2,5...10%. Данные приборы осуществляют процесс измерений за 0,2...0,5 с, т.е. являются самыми быстродействующими среди вольтметров переменного напряжения.
Цифровой вольтметр с времяимпульсным преобразователем
|
Измеряемое напряжение через входное устройство ВУ поступает на сравнивающее устройство (СУ1). От генератора линейно изменяющегося напряжения (ГЛИН) на сравнивающее устройство СУ1 поступает также образцовое напряжение. В момент равенства этих напряжений СУ1 вырабатывает импульс, который открывает временной селектор (ВС). На него от генератора счетных импульсов (ГСиС) поступают импульсы с образцовой частотой. В момент времени, когда образцовое напряжение будет равно 0, СУ2 вырабатывает импульс, который закрывает временной селектор. В результате, прохождение счетных импульсов прекращается. Электронный счетчик (ЭС) считает их количество, которое через дешифратор (Д) отображается на цифровом индикаторе (И).
ЛЕКЦИЯ 10. ИЗМЕРИТЕЛЬНЫЕ ГЕНЕРАТОРЫ
Для радиотехнических и электротехнических измерений характерны особенности: широкий диапазон частот, многообразие форм сигналов и видов модуляции. Имитация всех видов сигналов в первом приближении невозможна. Поэтому генераторы разделяют
а) по форме сигнала:
Þ Г2 – шумовых сигналов;
Þ Г3 – синусоидальных НЧ сигналов;
Þ Г4 – синусоидальных ВЧ сигналов;
Þ Г5 – импульсных сигналов;
Þ Г6 – сигналов специальной формы.
б) по частоте:
Þ НЧ (20 Гц – 200 кГц);
Þ ВЧ (200 кГц – 300 МГц);
Þ СВЧ (выше 300 МГц);
Þ с коаксиальным выходом на частотах 300 МГц – 1 ГГц;
Þ с волновым выходом на частотах более 10 ГГц.
в) по виду модуляции:
Þ с амплитудной;
Þ частотной;
Þ фазовой;
Þ импульсной.
Параметры генераторов синусоидальных колебаний
Важнейшим параметром, характеризующим форму выходного сигнала, являются нелинейные искажения, измеряемые в %. Параметр, определяющий нелинейные искажения, называется коэффициентом гармоник
(1)
где U1, U2, Un– действующие значения, соответственно первой, второй и высших гармоник составляющих спектр выходного сигнала. Данный коэффициент зависит от частоты сигнала и мощности сигнала на выходе.
Диапазон регулируемых частот характеризуется коэффициентом перекрытия.
(2)
Стабильность частоты, получаемой на выходе измерительного генератора, определяется коэффициентом стабильности
, (3)
где f1- частота генератора, измененная внешними условиями (например, изменением температуры или подключением нагрузки); f0– начальная частота генератора.
НЧ генератор
Обобщенная структурная схема представлена на рис. 1.
|
НЧ генератор предназначен для использования при настройке, испытаниях и ремонте различной радиоэлектронной аппаратуры, а также теле- и радиовещании. В настоящее время прослеживаются тенденции в расширении диапазона используемых частот в сторону как высоких частот, так и инфранизких.
Модуляция в данных генераторах отсутствует, т.к. они сами являются источником модулирующих колебаний. Основными блоками генератора являются задающий генератор ЗГ, который определяет частоту и форму колебаний. Для НЧ генераторов в большинстве случаев применяются RC задающие генераторы. Это связано с их простотой и удобством в обращении, а также они обеспечивают устойчивую частоту в НЧ диапазоне. Для построения задающих генераторов, т.е. для создания условий необходимых для получения колебаний необходимо выполнение двух требований:
1. баланс фаз, т.е. необходимо, чтобы напряжение с выхода усилителя поступало на его вход в одной и той же фазе, т.е. должна обеспечиваться положительная обратная связь;
2. баланс амплитуд, т.е. усиление усилителя должно быть достаточным для компенсации потерь в цепи положительной обратной связи.
Выходным устройством (ВУ) генератора низкой частоты является двухтактный усилитель мощности, что позволяет получать от генератора максимальную мощность при минимальных нелинейных искажениях. Однако, генератор отдает в нагрузку максимальную мощность лишь в том случае, когда выходное сопротивление генератора равно сопротивлению нагрузки. Для обеспечения данного режима в генераторе предусмотрен согласующий трансформатор, вторичная обмотка которого выполнена в виде секций и в каждой из секций подключено стандартное сопротивление 5, 50, 600 и 5000 Ом, которое можно изменять с помощью переключателя.
Измерительные высокочастотные генераторы сигналов
Высокочастотные генераторы являются источниками измерительных сигналов высоких и сверхвысоких частот. Приборы этой подгруппы используются при настройке радиоприемных устройств, определения их чувствительности и избирательности, для питания линий передач при антенных измерениях и т. п.
В ВЧ-генераторах предусмотрена модуляция амплитуды и частоты сигнала. По виду модуляции ВЧ-генераторы подразделяются на следующие:
1. с амплитудной (AM) синусоидальной модуляцией;
2. с частотной (ЧМ) синусоидальной модуляцией;
3. с импульсной модуляцией (амплитудной манипуляцией);
4. с частотной манипуляцией;
5. с фазовой манипуляцией;
6. с комбинированной модуляцией (с одновременным наложением двух и более видов модуляции).
Типовая структурная схема ВЧ-генератора сигналов изображена на Рис. 2.
Генератор состоит из блока ВЧ, аттенюатора ВЧ, генератора звуковой частоты (3Ч) с НЧ-аттенюатором, системы контроля и управления и блока питания. Блок ВЧ включает в себя задающий генератор и блок усилителей, состоящий из усилителей основного и вспомогательного каналов, модулятора, системы стабилизации и регулирования выходного напряжения. Первый широкополосный усилитель обеспечивает получение вспомогательного сигнала напряжением 1В. Система установки коэффициента модуляции состоит из ВЧ-модулятора и низкочастотной части формирования калиброванного модулирующего сигнала. Модулятор представляет собой широкополосный усилитель с нелинейной передаточной характеристикой. На входе его суммируется большой модулирующий сигнал и ВЧ - сигнал со значительно меньшей амплитудой. Модулирующий сигнал перемещает рабочую точку усилителя по нелинейной характеристике на участки с различной крутизной, изменяя коэффициент передачи каскада. Выходной сигнал после фильтрации модулирующей частоты оказывается модулированным по амплитуде. Глубина модуляции полученного сигнала не зависит от напряжения несущей, а определяется параметрами модулятора и амплитудой модулирующего сигнала. Это обстоятельство позволяет вести регулировку и отсчет коэффициента модуляции, изменяя и измеряя величину напряжения звуковой частоты. Модулирующее напряжение формируется встроенным генератором ЗЧ (обычно 1 кГц) либо в режиме внешней модуляции поступает от внешнего источника. Выбор режима модуляции осуществляется с помощью переключателя S1. Регулирование и отсчет величины модулирующего сигнала, необходимого для получения требуемой глубины модуляции, производится двумя ступенями: сначала устанавливается определенное опорное значение модулирующего сигнала по индикаторному прибору PV1, затем оно делится ступенчатым аттенюатором НЧ.
Система обеспечения и регулирования уровня выходных сигналов состоит из двух широкополосных усилителей, аттенюатора, детектора ВЧ-колебаний и дифференциального УПТ с регулируемым опорным напряжением. Первый широкополосный усилитель обеспечивает получение вспомогательного немодулированного сигнала с напряжением 1В. Второй широкополосный усилитель усиливает модулированный сигнал. Выходной сигнал основного канала в режиме непрерывной генерации составляет 0,5 В. При модуляции, в режиме пика модуляции напряжение на выходе основного канала возрастает до 1В. Стабилизация уровня выходного сигнала осуществляется следующим образом. Выходной сигнал основного канала выпрямляется первым детектором и поступает на один из входов дифференциального УПТ. На второй вход этого усилителя поступает сигнал от регулятора опорного напряжения. Если напряжение на выходе детектора отличается от опорного, то разность напряжений усиливается в УПТ, сигнал рассогласования поступает на модулятор и изменяет уровень выходного сигнала. При постоянном опорном напряжении схема обеспечивает стабилизацию уровня выходного сигнала. Изменением величины опорного напряжения осуществляется также установка уровня выходного напряжения в пределах 10 дБ. Если необходимо изменять выходной уровень в больших пределах, то это делается с помощью ступенчатого аттенюатора ВЧ. Система индикации обеспечивает установку опорного напряжения модулирующего сигнала, контроль наличия напряжения выходного сигнала и контроль напряжения питания. Как ясно из рис. 2 и описания принципа действия прибора, генератор ВЧ является сложным прибором. Существенные трудности конструирования генератора ВЧ вызываются необходимостью получения малых напряжений выходного сигнала (около 1 мкВ). Для этого требуется тщательная экранировка отдельных узлов, обеспечивающая развязку выходных цепей генератора от сравнительно мощных источников колебаний ВЧ.
Особенности измерительных генераторов СВЧ
Генераторы СВЧ перекрывают диапазон частот от 1 до 40 ГГц. Эти приборы предназначены для регулировки, настройки и испытаний радиоэлектронной аппаратуры и других СВЧ-устройств. По типу выходного соединителя они делятся на коаксиальные и волноводные. Частотная граница этих двух групп приборов лежит в диапазоне 7 ...18 ГГц.
Для СВЧ-генераторов характерно сравнительно небольшое перекрытие по частоте и однодиапазонное построение. Поэтому генераторы СВЧ выпускаются сериями однотипных приборов на определенные участки диапазона частот. Так, генератор Г4-90 рассчитан на диапазон частот 16,65 ...25,86 ГГц, а генератор Г4-91 – на диапазон 25,86...37,5 ГГц.
Типовая структура генератора СВЧ проста (рис. 3). Важную роль в обеспечении параметров генератора играют механические узлы. Так, отсчет частоты генератора, как правило, производится по механическому счетчику, связанному с элементом перестройки частоты через линеаризующее устройство. Счетчик
повышает разрешающую способность индикации частоты, обеспечивает простой и наглядный отсчет.
С контура задающего генератора мощность СВЧ-сигнала снимается с помощью подвижных устройств связи (емкостных или индуктивных). Однодиапазонность генератора позволяет связать механически съемники мощности с органом перестройки частоты. Введение в эту связь функциональной зависимости, обратной закону изменения мощности генератора от изменения частоты, позволяет достичь постоянства выходной мощности генератора в заданном диапазоне частот. Генераторы СВЧ-диапазона имеют встроенный измеритель мощности. В ряде случаев этот измеритель не подключается постоянно к источнику колебаний СВЧ. Выходной сигнал генератора перед проведением измерений вводится в измеритель мощности, устанавливается требуемой величины и после этого переключается в нагрузку. Задающим генератором в диапазоне СВЧ обычно служит клистрон. На частотах ниже 10 ГГц используется отражательный клистрон с внешним резонатором, на частотах свыше 10 ГГц — с внутренним резонатором. Генераторы на клистронах работают в режиме непрерывной генерации (НГ), амплитудной модуляции, частотной модуляции, импульсной модуляции.
Клистроны используются, например, в генераторах Г4-55 и Г4-56, в генераторах Г4-114 и Г4-115 сигналы, снимаемые с клистронного генератора, усиливаются лампой бегущей волны (ЛБВ).
Кроме клистронов, в качестве задающих генераторов применяют лампы обратной волны (ЛОВ), которые обеспечивают генерацию с электронной (безинерционной) перестройкой частоты колебаний в широких пределах, диоды Ганна и др. Диоды Ганна с внешним коаксиальным резонатором используются в генераторах Г4-112 и Г4-135.
Генераторы импульсов
Генераторы импульсов формируют измерительные сигналы для проверки и настройки различной радиоэлектронной аппаратуры, работающей в импульсном режиме. К такой аппаратуре относятся телевизионные устройства, ЭВМ, аппаратура телеметрии, радиолокации и т.п. Наиболее распространены генераторы импульсов прямоугольной формы. Генераторы импульсов по числу каналов основных импульсов подразделяются на одноканальные и многоканальные.
Одноканальные генераторы имеют на одном или нескольких связанных между собой выходах сигналы, не имеющие раздельной для каждого выхода регулировки параметров импульсов, кроме амплитуды и полярности. Многоканальные генераторы импульсов – генераторы, выдающие на раздельных не связанных между собой выходах синхронные импульсные сигналы, имеющие независимую для каждого выхода установку длительности, амплитуды и полярности.
По диапазону длительностей вырабатываемых импульсов генераторы подразделяются на генераторы микросекундной и наносекундной длительности импульсов. В зависимости от характера последовательности основных импульсов различают генераторы непрерывной последовательности импульсов, генераторы серий импульсов, генераторы кодовых последовательностей импульсов (кодовых пакетов).
Генераторы импульсов делятся на следующие группы:
1. Генераторы с калиброванной установкой амплитуды импульса.
2. Генераторы с калиброванной установкой длительности импульса.
3. Генераторы с калиброванной установкой частоты следования импульсов.
4. Генераторы с калиброванной установкой временного сдвига импульса.
5.
Генераторы с одинаковой точностью установки амплитуды, длительности, частоты следования и временного сдвига импульсов.
Структурная схема простейшего генератора импульсов одноканального типа изображена на рис. 4. Задающий генератор вырабатывает импульсы с частотой следования, регулируемой плавно, либо дискретно в заданном диапазоне. Импульсы задающего генератора используются для запуска схемы задержки и схемы формирования импульсов. Одновременно задающий генератор выдает импульсы синхронизации с той же частотой следования, выведенные на отдельное гнездо. Таким образом, с помощью элемента задержки можно обеспечить временной сдвиг основного сигнала относительно импульсов синхронизации. Задающий генератор может работать как в автоколебательном, так и в ждущем режиме. В ждущем режиме для запуска генератора необходимы пусковые импульсы, которые формируются устройством внешнего и однократного запуска. В ряде генераторов имеются возможности запуска генератора от последовательности внешних пусковых импульсов и однократного запуска путем подачи пускового импульса, сформированного в специальном устройстве. В режиме однократного запуска пусковой импульс в данной схеме формируется при нажатии кнопки, расположенной на передней панели прибора. Устройство задержки выдает импульсы, задержанные относительно запускающих импульсов, поступающих от задающего генератора. Время задержки регулируется либо плавно, либо дискретно. Схема формирования основных импульсов вырабатывает прямоугольные импульсы требуемой длительности и формы. Схема формирования позволяет устанавливать нужную длительность основных импульсов либо плавно, либо дискретно. В некоторых приборах регулируются длительность фронта и среза. Усилитель мощности предназначен для увеличения амплитуды основных импульсов до необходимого значения, изменения их полярности, а также для согласования схемы формирования основных импульсов с нагрузкой. Усилитель позволяет плавно изменять амплитуду импульсов в несколько раз. Для получения импульсов малой амплитуды служит ступенчатый аттенюатор, ослабляющий сигнал на 40 .. ...100 дБ.
Измеритель амплитуды импульсов предназначен для измерения установленного значения амплитуды выходного сигнала и представляет собой импульсный вольтметр.
Реальная форма импульсов на выходе импульсного генератора отличается от прямоугольной. Характерные искажения формы импульсов показаны на рис. 5. Амплитуду импульса определяют продлением плоской части вершины до пересечения с фронтом. Амплитуда импульсов на выходе генератора зависит от сопротивления подключенной к нему нагрузки. Поэтому значение амплитуды импульсов, обеспечиваемой генератором, указывается для определенного сопротивления нагрузки. Длительность импульса прямоугольной формы определяется на уровне 0,5 от значения амплитуды. Длительность фронта ф – время, в течение которого напряжение импульса нарастает от значения 0,1 до 0,9 амплитуды. Длительность среза с – время, в течение которого напряжение импульса уменьшается от 0,9 до 0,1 от значения амплитуды. Неравномерность вершины импульса 1 — изменение плоской части вершины импульса. Оценивается в процентах по отношению к значению амплитуды. Выбросы на вершине b1и срезе b2 импульса – кратковременное отклонение мгновенного значения импульсного напряжения при установлении вершины или на участке среза от линий, определяющих его вершину и основание. Выбросы импульса оцениваются в процентах от значения амплитуды. По длительности генерируемых импульсов генераторы прямоугольных импульсов делятся на генераторы микросекундного и наносекундного диапазонов длительностей. Первые выдают импульсы длительностью 10-1 ...106 мкс, вторые 1...25000 нc.
Помимо импульсных генераторов, предназначенных для формирования импульсов прямоугольной формы, существуют генераторы сигналов специальной формы, относящиеся к группе Г6. Генераторы этого типа вырабатывают набор сигналов специальной формы, в том числе пилообразной, треугольной, ступенчатой и т. п. Часто эти же генераторы вырабатывают многофазный синусоидальный сигнал. Например, генератор Г6-26 выдает набор синусоидальных сигналов с фазами 0°, 90°, 180°, 270°. В телевизионном генераторе Г6-8 вырабатываются импульсы синусквадратичной формы, с помощью которых оценивается полоса пропускания видеотракта, сигнал ступенчатой формы для оценки нелинейных искажений и др.
Генераторы шумовых сигналов
Генераторы шумовых сигналов являются источниками флуктуационного напряжения с определенными вероятностными характеристиками. Приборы этого типа, относящиеся к группе Г2, применяются при измерении коэффициента шума приемно-усилительных устройств, при оценке нелинейных искажений, помехоустойчивости различных радиоэлектронных устройств и т.п. Серийные генераторы шума классифицируются преимущественно по диапазону частот: низкочастотные (от единиц Гц до единиц МГц), высокочастотные (единицы–сотни МГц), сверхвысокочастотные (сотни МГц–десятки ГГц).
Принцип действия генератора шумовых сигналов поясняется рис. 6. где изображена обобщенная структурная схема НЧ-генератора. Задающим генератором здесь является первичный источник шума, в качестве которого могут использоваться нагретый непроволочный резистор, вакуумные и полупроводниковые шумовые диоды, фотоэлектронные умножители, тиратроны, газоразрядные трубки. Действие первичных источников шума базируется на физических явлениях, связанных с неравномерным движением носителей электрических зарядов в элементах электрических цепей. Резисторы создают шумы за счет хаотического движения электронов. Среднеквадратическое значение напряжения шума, создаваемого резистором, определяется по формуле
где k – постоянная Больцмана, равная 1,38×10-23 Дж/К; Т – абсолютная температура, К; R – активное сопротивление, на котором измеряется шумовое напряжение, Ом; Df — полоса частот, в которой производится измерение. Из формулы видно, что для увеличения шума резистор нужно нагреть. Резисторы в качестве первичного источника шума используются в диапазоне 0,1...11,5 ГГц, в коаксиальных и волноводных конструкциях.
Лекция 11. КЛАССИФИКАЦИЯ ПРИБОРОВ ДЛЯ ИССЛЕДОВАНИЯ ФОРМЫ, СПЕКТРА И НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ СИГНАЛОВ
Приборы для исследования формы, спектра и нелинейных искажений сигналов образуют одну из наиболее представительных подгрупп в общей классификации приборов – подгруппу С. Внутри этой подгруппы сконцентрированы осциллографы универсальные (С1), измерители коэффициента амплитудной модуляции (С2) и девиации частоты (С3), анализаторы спектра (С4), измерители нелинейных искажении (С6) и, наконец, осциллографы скоростные и стробоскопические (С7), запоминающие (С8) и специальные (С9).
Осциллографом называется прибор для наблюдения или регистрации электрических сигналов, а также для измерения их параметров. Слово «осциллограф» произошло от латинского слова «осцилум» – колебание и греческого слова «графо» – пишу. Таким образом, осциллограф в буквальном смысле – прибор для записи (регистрации) колебаний. Основная функция осциллографа заключается в воспроизведении в графическом виде различных электрических колебаний (осциллограмм), так как это принято в радиотехнике. Чаще всего с помощью осциллограмм наблюдается зависимость напряжения от времени. Ось X является осью времени, а по оси Y откладывается напряжение сигнала. С помощью осциллографа можно исследовать различные неэлектрические процессы, если использовать специальные преобразователи неэлектрических величин в пропорциональные им напряжение или ток. Осциллограф позволяет осуществить измерение различных параметров сигнала, например амплитуды, длительности, частоты, глубины модуляции, фазового сдвига.