Трофика клетки и дистрофический процесс.
Трофика клетки - комплекс процессов, обеспечивающих ее жизнедеятельность и поддержание генетически заложенных свойств. Расстройство трофики представляет собой дистрофию, развивающиеся дистрофические изменения составляют дистрофический процесс.
Этиологические факторы, вызывающие дистрофию клетки, могут быть различной природы. Развитие же дистрофического процесса носит стандартный характер. Эта особенность связана с тем, что внутриклеточные процессы протекают в виде цепных реакций, имеющих определенную последовательность. Поэтому дистрофический процесс в клетке относится к числу типовых внутриклеточных патологических процессов(Г. Н.Крыжановский).
Дистрофический процесс может развиваться и на тканевом, и на органном уровне, и на уровне организма. В той или иной форме он возникает при всех видах патологии, играя роль вторичного или параллельно развивающегося неспецифического эндогенного повреждения, входящего в комплекс патогенетических механизмов данной формы патологии.
Нейродистрофический процесс.Это развивающееся нарушение трофики, которое обусловлено выпадением или изменением нервных влияний. Оно может возникать как в периферичес-
ких тканях, так и в самой нервной системе. Выпадение нервных влияний заключается: 1) в прекращении функциональной стимуляции ин-нервируемой структуры в связи с нарушением выделения или действия нейромедиатора; 2) в нарушении секреции или действия комедиато-ров - веществ, которые выделяются вместе с ней-ромедиаторами и играют роль нейромодулято-ров, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов; 3) в нарушении выделения и действия трофогенов. Трофогены (трофины) - вещества различной, преимущественно белковой природы, осуществляющие собственно трофические эффекты поддержания жизнедеятельности и генетически заложенных свойств клетки. Источником трофогенов являются: 1) нейроны, из которых трофогены поступают с ортоградным аксоплазматичес-ким током в клетки-реципиенты (другие нейроны или иннервируемые ткани на периферии); 2) клетки периферических тканей, из которых трофогены поступают по нервам с ретроградным аксоплазматическим током в нейроны (рис. 186); 3) глиальные и шванновские клетки, которые обмениваются с нейронами и их отростками трофическими веществами. Вещества, играющие роль трофогенов, образуются также из сывороточных и иммунных белков. Трофическое воздействие могут оказывать некоторые гормоны. В регуляции трофических процессов принимают участие пептиды, ганглиозиды, некоторые нейромедиаторы.
К нормотрофогенамотносятся различного рода белки, способствующие росту, дифферен-цировке и выживанию нейронов и соматических клеток, сохранению их структурного гомеостаза (например, фактор роста нервов).
В условиях патологии в нервной системе возникают трофические вещества, индуцирующие устойчивые патологические изменения клеток-реципиентов (патотрофогены,по Г.Н. Крыжа-новскому). Такие вещества синтезируются, например, в эпилептических нейронах - поступая с аксоплазматическим током в другие нейроны, они могут индуцировать у этих нейронов-реципиентов эпилептические свойства. Патотрофогены могут распространяться по нервной системе, как по трофической сети, что является одним из механизмов распространения патологического процесса. Патотрофогены образуются и в других тканях.
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
![]() |
МО |
Дистрофический процесс в денервированной мышце. Синтезируемые в теле нейрона и транспортируемые в терминаль с аксоплазматическим током вещества, как и вещества, образующиеся в терминали, выделяются нервным окончанием и поступают в мышечные волокна (см. рис. 186), выполняя функцию трофогенов. Эффекты ней-ротрофогенов видны из опытов с перерезкой двигательного нерва - чем выше произведена перерезка, т.е. чем больше сохранилось трофогенов в периферическом отрезке нерва, тем позднее наступает денервационный синдром. Нейрон вместе с иннервируемой им структурой (например, мышечным волокном) образует регионарный трофический контур, или регионарную трофическую систему (рис. 186). Если осуществить перекрестную реиннервацию мышц с разными исходными структурно-функциональными характеристиками (реиннервация «медленных» мышц волокнами от нейронов, иннервировавших «быстрые» мышцы, и наоборот), то реиннерви-рованная мышца приобретает в значительной мере новые динамические характеристики: «медленная» становится «быстрой», «быстрая» - «медленной».
В денервированном мышечном волокне возникают новые трофогены, которые активируют разрастание нервных волокон (sprouting). Указанные явления исчезают после реиннервации. Нейродистрофический процесс в других тканях. Взаимные трофические влияния существуют между каждой тканью и ее нервным аппаратом. При перерезке афферентных нервов возникают дистрофические изменения кожи. Перерезка седалищного нерва, который является смешанным (чувствительным и двигательным), вызывает образование дистрофической язвы в области скакательного сустава (рис. 187). С течением времени язва может увеличиться в размерах и охватить всю стопу.
Классический опыт Ф. Мажанди (1824), послуживший началом разработки всей проблемы нервной трофики, заключается в перерезке у кролика первой ветви тройничного нерва. В результате такой операции развивается язвенный кератит, вокруг язвы возникает воспаление и в роговицу врастают со стороны лимба сосуды, которые в норме в роговице отсутствуют. Врастание сосудов является выражением патологического растормаживания сосудистых элементов - в дистрофически измененной роговице исчезает фактор, который тормозит в норме рост в нее
Глава 20 / ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
Рис. 186. Трофические связи мотонейрона и мышцы. Вещества из тела мотонейрона (МН), его мембраны 1, перикариона 2, ядра 3 транспортируются с
антероградным аксоплазматическим током 4 в терминаль 5. Отсюда они, а также вещества, синтезируемые в самой терминали 6, поступают трансси-
наптически через синаптическую щель (СЩ) в концевую пластинку (КП) и в мышечное волокно (MB). Часть неиспользованного материала поступает обратно из терминали в тело нейрона с ретроградным аксоплазматическим током 7. Вещества, образующиеся в мышечном волокне и концевой пластинке, поступают транссинаптически в обратном направлении в терминаль и далее с ретроградным аксоплазматическим током 7 в тело нейрона - к ядру 8, в перикарион 9, к мембране дендритов 10.
Некоторые из этих веществ могут поступать из
дендритов (Д) транссинаптически в другой нейрон
через его пресинаптическое окончание (ПО) и из
этого нейрона далее в другие нейроны. Между нейроном и мышцей происходит постоянный обмен веществами, поддерживающими трофику, структурную целостность и нормальную деятельность обоих
образований. В этом обмене принимают участие
глиальные клетки (Г). Все указанные образования
создают регионарную трофическую систему (или
трофический контур)
Рис. 187. Трофическая язва в области скакательного
сустава у белой крысы после перерезки седалищного
нерва
сосудов, и появляется фактор, который активирует этот рост.
Дополнительные факторы нейродистрофи-ческого процесса.К факторам, участвующим в развитии нейродистрофического процесса, относятся: сосудистые изменения в тканях, нарушения гемо- и лимфомикроциркуляции, патологическая проницаемость сосудистой стенки, нарушение транспорта в клетку питательных и пластических веществ. Важным патогенетическим звеном является возникновение в дистрофической ткани новых антигенов в результате изменений генетического аппарата и синтеза белка, образуются антитела к тканевым антигенам, возникают аутоиммунный и воспалительный процессы. В указанный комплекс патологических процессов входят также вторичное инфицирование язвы, развитие инфекционных повреждений и воспаления. В целом нейродист-рофические поражения тканей имеют сложный многофакторный патогенез (Н. Н. Зайко).
Генерализованный нейродистрофический процесс.При повреждениях НС могут возникать генерализованные формы нейродистрофического процесса. Одна из них проявляется в виде поражения десен (язвы, афтозный стоматит), выпадения зубов, кровоизлияния в легких, эрозии слизистой и кровоизлияния в желудке (чаще в области привратника), в кишечнике, особенно в области буагиниевой заслонки, в прямой кишке. Поскольку такие изменения возникают срав-
нительно регулярно и могут иметь место при разных хронических нервных повреждениях, они получили название стандартной формы нервной дистрофии(А. Д. Сперанский). Весьма часто указанные изменения возникают при повреждении высших вегетативных центров, в частности гипоталамуса (при травмах, опухолях), в эксперименте при наложении стеклянного шарика на турецкое седло.
Трофическая иннервация и трофические системы.Все нервы (двигательные, чувствительные, вегетативные, внутрицентральные нервные связи) осуществляют непосредственные трофические взаимодействия с иннервируемым ими субстратом (периферические ткани, постсинап -тические нейроны). Поэтому каждый нерв, какую бы функцию он ни выполнял, является одновременно трофическим (А. Д. Сперанский). Наряду с этим существует и специальная иннервация (усиливающие нервы, по И. П. Павлову; адаптационно-трофическая симпатическая нервная система, по Л. А. Орбели), возникшая в процессе эволюционного развития, которая регулирует в соответствии с текущими потребностями метаболизм органа, его энергетические и трофико-пластические процессы, усиливает при необходимости эти процессы и способствует быстрейшему восстановлению трофического и энергетического потенциала органа при его функционировании.
Нервная система в целом, благодаря многочисленным и разнообразным нейрональным связям, представляет собой трофическую сеть. По этой сети распространяются также патогенные факторы эндогенной (патотрофогены, антитела к нервной ткани и нейромедиаторам) и экзогенной (токсины, вирусы) природы. В теснейшем трофическом взаимодействии функционируют все главные интегративные системы организма - нервная, эндокринная, иммунная. Наряду с этим периферические ткани, находясь под трофическим контролем, сами оказывают трофическое влияние на нервную и другие интегративные системы. Таким образом, существует единая трофическая система организма(Г.Н. Кры-жановский). Первичные нарушения в каком-либо звене этой системы влекут за собой изменения и в других звеньях.
Нарушения нервной трофики составляют важное патогенетическое звено болезней нервной системы и нервной регуляции соматических органов, поэтому коррекция трофических измене-
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
ний является необходимой частью комплексной патогенетической терапии.
20.3. ПАТОЛОГИЯ НЕЙРОНА
20.3.1. Нарушение проведения возбуждения
Распространение возбуждения по нервному волокну обеспечивается последовательным сочетанием одних и тех же процессов: деполяризацией участка мембраны волокна > входом в этом участке Na4 > деполяризацией соседнего участка мембраны > входом в этом участке Na+ и т.д.
При недостаточном входе Na+ нарушается генерация распространяющегося потенциала действия и проведение прекращается. Такой эффект имеет место при блокаде Ма+-каналов местными анестетиками (новокаин, лидокаин и др.) и рядом других химических агентов. Специфическим блокатором Ма+-каналов является тетродотоксин - яд, вырабатывающийся во внутренних органах рыбы фугу. Блокирование проведения возбуждения вызывают также вещества, нарушающие процесс реполяризации мембраны, связанный с закрыванием Ма+-каналов. К ним относятся инсектициды (например, ДДТ), вератридин, аконитин, батрахотоксин и др.
Исходная разность концентрации ионов Na+ и К+по обе стороны мембраны (Na+в 10-15 раз больше снаружи, К+ в 50-70 раз больше внутри), необходимая для генерации потенциала действия, восстанавливается и поддерживается активным транспортом ионов Na+-, К+-насосом. Он выкачивает наружу Na1", поступивший внутрь (в цитоплазму) во время возбуждения, в обмен на наружный К+, который вышел наружу во время возбуждения. Деятельность насоса, роль которого выполняет встроенная в мембрану Na+-, K+-АТФаза, обеспечивается энергией, высвобождающейся при расщеплении АТФ. Дефицит энергии ведет к нарушению работы насоса, что обусловливает неспособность мембраны генерировать потенциал действия и проводить возбуждение. Такой эффект вызывают разобщители окислительного фосфорилирования (например, динит-рофенол) и другие метаболические яды, а также ишемия и длительное охлаждение участка нерва. Ингибируют насос и, как следствие этого, нарушают проводимость сердечные гликозиды (например, уабаин, строфантин) при их применении в относительно больших дозах.
Проведение возбуждения по аксону нарушается при различных видах патологии периферических нервов и нервных волокон в ЦНС - при воспалительных процессах, рубцовых изменениях нерва, при сдавлении нервных волокон, при демиелинизации волокон (аллергические процессы, рассеянный склероз), при ожогах и др. Проведение возбуждения прекращается при дегенерации аксона.
20.3.2. Нарушение аксонального
транспорта
Аксональный транспорт из тела нейрона в нервное окончание и из нервного окончания в тело нейрона осуществляется при участии ней-рофиламентов, микротрубочек и контрактильных актино- и миозиноподобных белков, сокращение которых зависит от содержания Са2+ в среде и от энергии расщепления АТФ. Вещества, разрушающие микротрубочки и нейрофиламенты (колхицин, винбластин и др.), недостаток АТФ, метаболические яды, создающие дефицит энергии (динитрофенол, цианиды), нарушают аксоток. Аксональный транспорт страдает при дегенерации аксона, вызываемой недостатком витамина Вв и витамина В:) (болезнь бери-бери), промышленными ядами (например, акриламидом, гек-сахлорофосом), солями тяжелых металлов (например, свинца), фармакологическими препаратами (например, дисульфирамом), алкоголем, при диабете, при сдавлении нервов и при дистрофических повреждениях нейрона. При перерыве аксона возникает уоллеровская дегенерация (распад) его периферической части и ретроградная дегенерация центральной части. Эти процессы связаны с нарушением трофики в обеих частях аксона.
Расстройства аксонального транспорта трофо-генов и веществ, необходимых для образования и выделения медиаторов нервным окончанием, обусловливают развитие дистрофических изменений нейронов и иннервируемых тканей и нарушение синаптических процессов. Распространение с аксональным транспортом патотрофоге-нов, антител к нервной ткани и к нейромедиато-рам приводит к вовлечению в патологический процесс нейронов в соответствующих отделах ЦНС.
20.3.3. Патология дендритов
Дендриты и их шипики являются самыми
Глава 20 / ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
ранимыми структурами нейрона. При старении шипики и ветви дендритов редуцируются, при некоторых дегенеративных и атрофических заболеваниях мозга (старческое слабоумие, болезнь Альцгеймера) они не выявляются. Дендро-ши-пиковый аппарат страдает при гипоксии, ишемии, сотрясении мозга, стрессорных и невроти-зирующих воздействиях. Патология дендритов связана также с нарушением их микротрубочек, которые исчезают при действии различных патогенных агентов.
20.3.4. Патология нейрональных мембран
Повреждения как клеточной (цитоплазмати-ческой), так и внутриклеточных мембран возникают при различных патогенных воздействиях, и сами являются причиной дальнейшего развития патологии нейрона.
Усиленное перекисное окисление липидов (ПОЛ) нейрональных мембран оказывает влияние не только на мембранные, но и на другие внутриклеточные процессы.
Практически нет патологического процесса в нервной системе, при котором не возникало бы усиленного ПОЛ. Оно имеет место при эпилепсии, эндогенных психозах (например, шизофрении, маниакально-депрессивном синдроме), при неврозах, различного рода стрессах и повреждениях, при ишемии, хронической гипоксии, функциональных перегрузках нейронов и пр. С ним связана дальнейшая гиперактивация нейронов.
Вследствие увеличения проницаемости мембран происходит выход из нейрона различных веществ, в том числе антигенов, которые вызывают образование антинейрональных антител, что приводит к развитию аутоиммунного процесса. Нарушение барьерных свойств мембран обусловливает возрастание тока ионов Са2+ и Na+ в нейрон и К+ - из нейрона; эти процессы в сочетании с недостаточностью энергозависимых Na+-, K+- и Са2+-насосов (их деятельность изменяется также под влиянием усиленного ПОЛ) приводят к частичной деполяризации мембраны. Увеличенный вход Са2+ не только вызывает гиперактивацию нейрона, но и при чрезмерном его содержании в клетке ведет к патологическим изменениям метаболизма и внутриклеточным повреждениям. Весь указанный комплекс процессов, если он не подавляется и не компенсируется, обусловливает гибель нейрона.
Нормализация ПОЛ и стабилизация нейрональных мембран должны быть частью комплексной патогенетической терапии различных форм патологии НС.
20.3.5. Энергетический дефицит
Потребность нейронов в энергообеспечении -самая высокая из всех клеток организма, и нарушение энергообеспечения является одной из распространенных причин патологии нейрона. Энергетический дефицит может быть первичным - при действии метаболических ядов (например, динитрофенола, цианидов), либо вторичным - при различных повреждениях, нарушениях кровообращения, шоке, отеке, общих судорогах, усиленной функциональной нагрузке и др. Дефицит энергии относится к разряду типовых внутриклеточных патологических процессов.
Главными условиями развития энергетического дефицита являются недостаток кислорода и значительное повреждение митохондрий, в которых синтезируется основной носитель энергии - АТФ. Причиной дефицита энергии может быть также недостаток субстрата окисления, в частности глюкозы, которая является для мозга основным субстратом окисления. Нейроны коры не имеют запасов глюкозы и потребляют ее непосредственно из крови (глюкоза свободно проходит ГЭБ), поэтому они особенно чувствительны к гипогликемии. Мозг потребляет около 20% от всей находящейся в крови глюкозы. Инсули-новые шоки, применяемые для лечения некоторых психозов, связаны с глубокой гипогликемией и протекают с потерей сознания и нередко с судорогами. При ряде патологических состояний (травматический шок, кровопотеря) мозг может дольше обеспечиваться кислородом и глюкозой благодаря перераспределению крови и уменьшению их потребления другими тканями. Для быстрейшего восстановления деятельности мозга после общих судорог необходим достаточно высокий уровень глюкозы в крови. Энергетический дефицит усугубляется нарушением цикла Кребса.
При глубоком нарушении окислительного фосфорилирования и синтеза макроэргов источником энергии становится анаэробный гликолиз. Он имеет характер компенсаторного механизма, однако его эффект не может восполнить дефицит энергии, а нарастающее увеличение содержания молочной кислоты в мозге оказывает от-
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
лоты, неорганического фосфора. С входом Са2 Схема 38 Комплекс внутриклеточных процессов, возникающих при ишемии и вызывающих дегенерацию и гибель мембран |
рицательное влияние на деятельность нейронов и усугубляет отек мозга.
20.3.6. Эффекты ишемии и гипоксии
В связи с высокой потребностью в энергии нейроны ЦНС нуждаются в значительном кислородном обеспечении. Нейрон коры головного мозга потребляет 250-450 мкл 02/мин (для сравнения - глиоцит и гепатоцит потребляют до 60 мкл О2). Снижение потребления кислорода мозгом всего лишь на 20% может вызвать потерю сознания у человека. Исчезновение импульсной активности нейронов возникает уже в первые десятки секунд ишемии мозга. Через 5-6 мин после начала асфиксии наступает глубокое и нередко необратимое нарушение деятельности мозга. Гибель нейрона при ишемии является результатом осуществления комплекса взаимосвязанных внутриклеточных процессов (схема 38).
При аноксии головного мозга в первую очередь страдает кора. Гибель всего мозга означает «мозговую смерть», которая проявляется в полном исчезновении биоэлектрической активности. При наступлении «мозговой смерти» согласно законодательству можно брать у погибшего
внутренние органы для пересадки - они еще функционируют, так как более резистентны к аноксии, чем ЦНС. Филогенетически более старые структуры ЦНС (спинной мозг, ствол головного мозга) менее чувствительны к асфиксии, чем молодые (подкорка и особенно кора). Поэтому при запоздалом оживлении организма может наступить декортикация, «бескорковый» организм может существовать на искусственном дыхании.
Весьма чувствительны к аноксии тормозные механизмы. Одним из следствий этого является растормаживание неповрежденных структур ЦНС. На ранних стадиях ишемии, когда нейроны мозга еще способны давать реакцию, они могут гиперактивироваться. На поздних стадиях ишемии гиперактивация нейронов сменяется их инактивацией.
С входом Na+ в нейрон связана первая, острая фаза поражения нейрона. Возрастание концентрации Na+ в цитозоле нейрона приводит к повышению осмолярности, что обусловливает вход воды в нейрон и его набухание. В дальнейшем повышение осмолярности нейрона связано также с накоплением в нем Са2+, молочной кис-
в
Ишемия
J
Накопление возбуждающих аминокислот в синаптической щели
Гиперактивация глутаматных НМДА-рецепторов
Открывание Na- и Са-каналов i
Вход Са'в нейрон
Вход Na+ в нейрон
Гиперактивация нейрона
Увеличение содержания цитоплазма-тического Са2'
Образование свободных радикалов,активация
внутриклеточных протеаз,липаз и эндонуклеаз;
нарушение окислительного фосфорилирования,
энергетический дефицит
Вход СГ и воды, набухание нейрона и митохондрий
Повреждение клеточных органелл и мембран, структурный дефицит, дистрофический процесс, дегенерация, гибель нейрона
Глава 20 / ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
нейрон связана вторая фаза повреждения нейрона. Возросший вход Са2+ в нейрон обусловлен активацией глютаматных рецепторов в связи с усиленным выделением глютамата нервными окончаниями при ишемии. Антагонисты глютаматных рецепторов и антагонисты Са2+ (блока-торы Са2+ -каналов) способны предотвратить ише-мическую дегенерацию нейронов и оказать лечебный эффект.
![]() |
Na |
Повреждение нейрона происходит не только во время ишемии, но и после нее. Эти повреждения связаны с реперфузией мозга и возобновлением циркуляции крови, и именно они могут представлять главную опасность. Большую роль реперфузионных постишемических повреждениях играют: новая волна поступления Са2+ в нейрон, перекисное окисление липидов и процессы свободнорадикального окисления, усиленные в связи с действием поступающего кислорода -
Рис. 188. Механизмы контроля за содержанием
внутриклеточного Са2+ в нейроне:
1 - поглощение Са2+структурами «гладкого эндо-
плазматического ретикулума» (ГВ - везикулами с
гладкой поверхностью, Т - трубочками, цистрена-
ми), кальцийсомами (СаС) и другими микросомами;
этот процесс осуществляется с помощью Са2+-АТФазы; 2 - поглощение Са2+ митохондриями (М), которое также осуществляется с помощью Са2+-АТФазы; 3 - поглощение Са2+ связывающими его белками (СаСб); 4 - выведение Са2+ из цитозоля нейрона во внеклеточную среду с помощью встроенной в нейрональную мембрану Са2+-АТФазы, играющей роль кальциевой помпы; 5 - выведение Са2+ из цитозоля нейрона во внеклеточную среду с помощью Ма+/Са2+-обменника
возрастание содержания молочной кислоты в связи с поступлением глюкозы в условиях нарушения окислительного фосфорилирования и в связи с возросшим анаэробным гликолизом; происходит отек мозга за счет поступления воды из крови при возобновлении циркуляции.
Чрезмерное содержание Са2+ в нейроне, с чем связано возникновение ишемической и постише-мической дегенерации нейрона, обусловлено не только усиленным входом Са2+, но и нарушением механизмов его внутриклеточного гомеоста-за (рис. 188). В сложный комплекс Са2"1 -индуцируемых внутриклеточных повреждений входят: альтерация внутриклеточных белков, усиленный фосфолипазный гидролиз и протеолиз, разрушение внутриклеточных структур, повреждение цитоплазматической и внутриклеточных мембран, набухание нейронов, нарушение деятельности генома. При критическом возрастании интенсивности этих процессов происходят необратимые повреждения и гибель нейрона, возникает так называемая «кальциевая смерть»*.
На поздних стадиях патологического процесса, вызванного ишемией мозга, а также при хро-низации процесса возникает новый комплекс вторичных изменений - дегенеративно-дистрофические процессы, нарушения энзимных и метаболических систем, сосудистые изменения, образование антител к мозговой ткани, аутоиммунная агрессия и др. Они составляют патогенетическую структуру постишемической энцефалопатии, которая может продолжать развиваться (прогредиентное развитие). Эти процессы, а также изменения в других системах и органах с их последствиями имеют место и после реанимации организма, особенно если она была затяжной и поздней. В своей совокупности они составляют патогенетическую структуру постреанимационной болезни (В.А. Неговский).
Гипоксия той или иной степени сопровождает многие (если не все) формы патологии мозга. Являясь типовым и неспецифическим процессом, она, однако, может вносить значительный вклад в его развитие. Вместе с тем умеренная
* Нарушение внутриклеточного гомеостаза Са24 может иметь место не только при ишемии, но и при других формах патологии нервной системы, при чрезмерной и длительной гиперактивации нейрона, особенно в условиях энергетического дефицита, при усиленном действии глютамата и пр. Оно относится к типовым внутриклеточнымпатологическим процессам.
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
гипоксия может стимулировать метаболические и пластические процессы в нейроне, способствовать адаптации и повышению резистентности, повышать трофический и пластический потенциал нейрона, усиливать адаптационные возможности мозга. Дозированная гипоксия применяется для профилактики и лечения ряда заболеваний центральной нервной системы.
20.3.7. Синаптическая стимуляция и повреждение нейронов
Возбуждающая синаптическая стимуляция может играть важную роль в развитии патологии нейрона. Усиленная и длительная синаптическая стимуляция сама по себе вызывает функциональное перенапряжение нейрона, его стресс, который может завершиться дегенерацией внутриклеточных структур. Стрессорные повреждения усиливаются при нарушениях микроциркуляции и мозгового кровообращения, при действии токсических факторов.
Первостепенное значение синаптическая стимуляция имеет при развитии аноксических (ише-мических) повреждений. Культура тканей нейронов становится чувствительной к аноксии лишь после установления синаптических контактов между нейронами. Весьма чувствительны к аноксии нейроны коры и гиппокампа, в которых имеется высокая плотность возбуждающих синаптических входов. Синаптическая стимуляция реализуется через действие возбуждающих аминокислот (глутамат, аспартат, L-гомоцистеинат), причем эти повреждения подобны тем, которые возникают при ишемии и связаны с увеличенным содержанием внутриклеточного Са2+. Этот эффект известен как нейротоксическое (или цитотоксическое) действие возбуждающих аминокислот. С синаптической гиперактивацией, действием возбуждающих аминокислот и гипоксией связаны повреждение и гибель нейронов при эпилептическом статусе и в постишемичес-ком периоде. При этом к патогенному действию указанных факторов присоединяется энергетический дефицит.
В связи с изложенным становятся понятными благоприятные эффекты (т.е. ослабление си-наптического воздействия) уменьшения функциональной нагрузки, предотвращение дополнительных раздражений, «охранительное», по И.П. Павлову, торможение обратимо поврежденных нейронов.
20.3.8. Нарушение структурного
гомеостаза нейрона
Значительную роль в патологии нейрона играют нарушения внутриклеточного структурного гомеостаза. В норме процессы изнашивания и распада внутриклеточных структур уравновешиваются процессами их обновления и регенерации. Совокупность этих процессов составляет динамический структурный внутриклеточный гомеостаз.
Внутриклеточная регенерация - универсальный биологический механизм, имеющий место во всех клетках организма. Для жизнедеятельности нейрона, который, как высокодифферен-цированная клетка, не способен митотически делиться, этот механизм имеет существенное значение - внутриклеточная регенерация является единственным способом структурного обновления нейронов и поддержания их целостности. К ней относятся синтез белков, образование внутриклеточных органелл, митохондрий, мембранных структур, рецепторов, рост нервных отростков (аксоны, дендриты, дендритные шипики) и
ДР-
Процессы внутриклеточной регенерации требуют высокого энергетического и трофического обеспечения и полноценного метаболизма клетки. При повреждениях нейрона, возникновении энергетического и трофического дефицита, нарушениях деятельности генома страдает внутриклеточная регенерация, падает пластический потенциал клетки, распад внутриклеточных структур не уравновешивается их восстановлением - происходят глубокие нарушения динамического структурного гомеостаза нейрона; при прогрессировании этого процесса нейрон погибает.
20.3.9. Нарушение деятельности
нейрона при изменении процессов
внутриклеточной сигнализации
После восприятия рецептором сигнала (связывания рецептором нейромедиатора, гормона и др.) в нейроне возникает каскад цепных метаболических процессов, обеспечивающих необходимую активность нейрона. Существенную роль в этих процессах играют так называемые усилительные, или пусковые, ферменты и образующиеся под их влиянием вещества-посредники, вторичные мессенджеры.
Глава 20 / ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
Два типа из указанных процессов наиболее изучены: в одном из них (система АЦ-аза -цАМФ) роль пускового усилительного фермента играет аденилатциклаза (АЦ-аза), а роль связанного с ней вторичного мессенджера - циклический аденозинмонофосфат (цАМФ); в другом (система фосфоинозитидов) пусковым ферментом является фосфолипаза С, а в качестве вторичных мессенджеров выступают инозиттрифосфат (ИФ.1) и диацилглицерин (ДАГ). Роль универсального вторичного мессенджера играет Са2+, принимающий участие практически во всех внутриклеточных процессах. Существенным результатом деятельности указанных систем и Са2+ является активация ряда протеинкиназ, которые обеспечивают фосфорилирование и повышение, таким образом, активности различных функциональных белков - мембранных, цитоплазма-тических и ядерных, ионных каналов, с чем связаны осуществление функций нейрона и его жизнедеятельность.
Совокупность указанных каскадных мембранных и внутриклеточных процессов составляет эндогенную усилительную систему нейрона, которая может обеспечить многократное усиление входного сигнала и возрастание его эффекта на выходе из нейрона. Так, каскад метаболических процессов АЦ-азного пути может усилить эффект стимула в 107 - 108 раз. Благодаря этому возможны выявление и реализация слабого сигнала, что имеет особое значение в условиях патологии, при нарушении синаптического проведения.
Многие изменения функций нейрона связаны с действием патогенных агентов на те или иные звенья указанных систем внутриклеточной сигнализации. Фармакологическая коррекция деятельности нейрона и эффекты лечебных средств также реализуются через соответствующие изменения этих систем. Так, холерный и коклюшный токсины действуют на процессы, связанные с активностью мембранных G-белков, активирующих или угнетающих АЦ-азу. Ксан-тины (теофиллин, кофеин) обусловливают накопление цАМФ, что приводит к усиленной деятельности нейрона. При действии ряда противосудо-рожных препаратов (например, дифенилгидан-тоина, карбамазепина, бензодиазепинов) и психотропных средств (например, трифтазина) угнетаются разные пути фосфорилирования бел-
ков, благодаря чему снижается активность нейронов. Ионы лития, применяемые при лечении некоторых эндогенных психозов, ослабляют деятельность системы фосфоинозитидов. С усиленным входом Са2+ связана эпилептизация нейронов, блокада этого входа антагонистами Са2+ подавляет эпилептическую активность.
20.3.10. Гиперактивность нейрона
Гиперактивность нейрона обусловлена значительным, выходящим из-под контроля нарушением баланса между возбуждением и торможением нейрона в пользу возбуждения. В функциональном отношении она заключается в продуцировании нейроном усиленного потока импульсов, который может иметь различный характер: высокочастотные потенциалы действия; отдельные разряды; разряды, сгруппированные в пачки, и пр. Особый вид гиперактивности представляет собой пароксизмальный деполяризацион-ный сдвиг (ПДС) в мембране, на высоте которого возникает высокочастотный разряд (рис. 189). Такой вид гиперактивности рассматривается как проявление эпилептизации нейрона.
Указанный сдвиг баланса между возбуждением и торможением может быть обусловлен либо первичным усиленным возбуждением нейрона, преодолевающим тормозный контроль, либо первичной недостаточностью тормозного контроля. Первый механизм реализуется значительной деполяризацией мембраны и усиленным входом Na+ и Са2+ в нейрон, второй - расстройством механизмов, обеспечивающих гиперполяризацию мембраны: нарушением выхода К+ из нейрона и входа С1~ в нейрон.
Существенным эндогенным регулятором активности нейрона является у-аминомасляная кислота (ГАМК). Она вызывает торможение нейрона при связывании со своим рецептором, входящим в сложный белковый дГАМК-комплекс, который состоит из нескольких субъединиц; при активации комплекса под влиянием ГАМК усиливается поступление С1~ в нейрон. При растор-маживании нейрона в связи с ослаблением гиперполяризации и деполяризацией мембраны происходит усиление поступления Са2+ в нейрон. Кроме того, Са2+, находясь уже в цитозоле, нарушает поступление С1~ в нейрон, ослабляя, таким образом, изнутри «ГАМКергическое» торможение. Со всеми этими путями действия Ca2f
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
связана эпилептизация нейрона, возникающая под влиянием конвульсантов, которые нарушают ГАМКергическое торможение. Многие кон-вульсанты (например, пенициллин, коразол и др.) оказывают сложное действие на нейрон, одновременно активируя возбуждающие и инак-тивируя тормозные механизмы.
![]() |
UJiUJJ^ |
![]() |
Хроническая стимуляция нейрона (например, при прямом электрическом раздражении, синап-тическом воздействии, под влиянием возбуждающих аминокислот и др.) даже слабой интенсивности может с течением времени привести к гиперактивации нейрона. С другой стороны,
д
Рис. 189. Различные виды спонтанной активности нейрона в эпилептическом очаге, вызванном столбнячным токсином в двигательной зоне коры головного мозга кошки: нижние кривые (Б,Е) - последовательные (через 40; 45; 85; 90 и 130 с) после А записи электрической активности нейрона, сделанные с помощью внутриклеточного отведения. Верхние кривые - потенциалы, регистрируемые одновременно с поверхности мозга в эпилептическом очаге (ЭкоГ). Нейрон может генерировать с разной частотой регулярные потенциалы действия (А, Б, Д) и ПДС с высокочастотным разрядом (В, Г); на кривой Е видно, как регулярные высокочастотные разряды
завершают ПДС. Во время ПДС на ЭкоГ в зоне очага появляется спайковый разряд (В, Г). Эпилептический очаг создан в соматосенсорной зоне кошки столбнячным токсином (микроинъекция). Отметка времени и сигнала: для ЭкоГ 100 мкВ, для внутриклеточного отведения 20 мВ; время 40 с
выключение афферентации нейрона также обусловливает гиперактивацию нейрона. Этот эффект объясняется повышением чувствительности нейрона при денервации и нарушением тормозных процессов.
Таким образом, патологическая гиперактивация нейронов, их эпилептизация, представляет сложный комплекс разнообразных мембранных и внутриклеточных процессов. Для подавления эпилептической активности целесообразно комплексное применение веществ, нормализующих основные патогенетические звенья процесса. Среди корригирующих воздействий первостепенное значение имеют блокада входа Са2+ и восстановление тормозного контроля.
20.4. ГЕНЕРАТОРЫ ПАТОЛОГИЧЕСКИ УСИЛЕННОГО ВОЗБУЖДЕНИЯ (ГПУВ)
■
20.4.1. Понятие и общая характеристика
Расстройство деятельности ЦНС возникает при воздействии достаточно мощного потока импульсов, способного преодолеть механизмы регуляции и тормозного контроля других отделов ЦНС и вызвать их патологическую активность. Столь мощный поток импульсов продуцируется группой гиперактивных нейронов, образующих генератор патологически усиленного возбуждения (Г. Н. Крыжановский).
Генератор - это агрегат гиперактивных взаимодействующих нейронов, продуцирующий неконтролируемый поток импульсов. Интенсивность и характер этого потока не соответствуют поступающему сигналу и определяются только особенностями структурно-функциональной организации генератора. Вследствие того, что нейроны генератора активируют друг друга, генератор способен самоподдерживать свою активность, не нуждаясь в постоянной дополнительной стимуляции извне.
Возникая при повреждениях нервной системы, генератор становится эндогенным механизмом развития патологического процесса. Он лежит в основе разнообразных нервных расстройств, относящихся к разным сферам деятельности нервной системы. Поэтому его образование имеет характер практически универсального патогенетическогомеханизма. Оно является типовымпатологическим процессом, осуществляющимся на уровне межнейрональных от-
Глава 20 / ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
ношений. Электрофизиологическим выражением деятельности генератора служат суммарные потенциалы составляющих его нейронов. В качестве примера таких потенциалов можно привести электрическую активность, регистрируемую в области генератора в гигантоклеточном ядре продолговатого мозга (рис. 190) и в эпилептическом очаге в коре головного мозга, который является одним из видов генератора.
20.4.2. Патогенетическое значение ГПУВ
Основное патогенетическое значение генератора заключается в том, что он гиперактивирует тот отдел ЦН€, в котором он возник или с которым он непосредственно связан, вследствие чего этот отдел приобретает значение патологической детерминанты (см. разд. 20.5), формирующей патологическую систему (см. разд. 20.6). Поскольку патологические системы лежат в основе соответствующих нервных расстройств (ней-ропатологических синдромов), образование гене-
Рис. 190. Характер вызванной активности в гигантоклеточном ядре кошки в норме и при формировании в нем генератора после введения столбнячного
токсина: А - реакция гигантоклеточного ядра в норме на слабое одиночное раздражение икроножного нерва; реакция того же гигантоклеточного ядра на одиночное раздражение той же силы того же нерва при формировании в ядре генератора через 2 ч (Б), 3 ч (В) и 4 ч (Г) после введения в ядро столбнячного токсина: длительные, возрастающие со временем по частоте и амплитуде послеразряды, которые могут продолжаться неопределенное долгое время, - генерирование интенсивного самосдерживающего возбуждения
ратора является инициальным звеном этих расстройств, возникающим на уровне межнейро-нальных отношений. Экспериментально это доказывается тем, что, создавая генератор в определенных отделах ЦНС, можно вызвать соответствующие нейропатологические синдромы (например, различные виды болевых и судорожных синдромов, паркинсонический синдром, ряд эмоционально-поведенческих расстройств и др.
20.4.3. Образование и деятельность ГПУВ
Генератор может образовываться при действии разнообразных веществ экзогенной или эндогенной природы, вызывающих либо нарушение механизмов тормозного контроля (что влечет за собой растормаживание и гиперактивацию нейронов), либо непосредственную гиперактивацию нейронов. В последнем случае тормозные механизмы сохранены, но они функционально неэффективны и неспособны нормализовать деятельность нейронов. Во всех случаях обязательным условием образования и деятельности генератора является недостаточность торможения составляющих его нейронов.
Примером образования генератора при первичном нарушении торможения могут быть генераторы, возникающие при действии столбнячного токсина, стрихнина, пенициллина и других конвульсантов. Примером образования генератора при первичной гиперактивации нейронов могут быть генераторы, возникающие при усиленной и продолжительной синаптической стимуляции, при действии возбуждающих аминокислот (в частности, глютамата), при неглубокой ишемии и постишемической реперфузии ЦНС, при соответствующих изменениях рецеп-торных, мембранных и метаболических процессов. Генератор может возникать также при де-афферентации нейронов после перерезки нервов и спинного мозга, с чем связаны деафферента-ционные болевые синдромы.
На ранних стадиях развития генератора, когда тормозные механизмы еще сохранены, а возбудимость нейронов невысокая, генератор активируется достаточно сильными стимулами, поступающими через определенный вход в составляющую его группу нейронов. На поздних стадиях, когда возникает глубокая недостаточность тормозных механизмов и значительно повыша-
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
ется возбудимость нейронов, генератор может активироваться различными стимулами из разных источников, а также активироваться спонтанно благодаря деятельности значительно и устойчиво измененных нейронов.
Характер деятельности генераторов, образующихся в разных отделах ЦНС и в разных условиях, неодинаков. Он определяется особенностями структурно-функциональной организации генератора. В связи с этим разные генераторы, а также один и тот же генератор на разных стадиях своего развития, продуцируют различные по своему характеру и продолжительности потоки импульсов. С этим связаны особенности вызываемых генератором патологических реакций и протекания приступов при тех или иных патологических синдромах.
20.5. ПАТОЛОГИЧЕСКАЯ ДЕТЕРМИНАНТА
20.5.1. Понятие и общая
характеристика
Образование генератора не всегда имеет своим следствием возникновение патологических реакций. При блокаде распространения генерируемого возбуждения механизмами тормозного контроля генератор оказывается функционально изолированным и не вызывает системных патологических эффектов. Патология возникает, если гиперактивируемый под влиянием генератора отдел ЦНС активно влияет на другие образования ЦНС, вовлекает их в патологическую реакцию и объединяет их в новую, патоди-намическую организацию - патологическую систему (Г. Н. Крыжановский). Во многих случаях, вчастности на ранних стадиях образования патологической системы и востровозникающих патологических системах, такой гиперактивный отдел ЦНС детерминирует также и характер деятельности индуцированной им патологической системы, он приобретает значение патологической детерминанты.Роль патологической детерминанты может играть любое образование ЦНС (отдел, ядро, нервный центр и пр.).
20.5.2. Патогенетическое значение
патологической детерминанты
Патологическая детерминанта является формирующим, ключевым и управляющим звеном
Глава 20 / ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
патологической системы. Она представляет собой эндогенный механизм дальнейшего развития патологического процесса. Возникновение детерминанты относится к разряду типовых патологических процессов, реализующихся на системном уровне. Поскольку детерминанта определяет характер активности частей системы и их взаимодействие внутри системы, она является выражением принципа внутрисистемныхотношений.
Примером патологической детерминанты в коре головного мозга является мощный эпилептический очаг, под влиянием которого формируется комплекс из разрозненных, более слабых очагов эпилептической активности (ЭпА) (рис. 191). Такой очаг не только формирует эпилепти-
Рис. 191. Формирование комплекса очагов эпилептической активности под влиянием детерминированного эпилептического очага:
А - слабые разрозненные эпилептические очаги в зоне 2 и 3, вызванные аппликацией соответственно пенициллина и стрихнина. Зона 4 не подвергалась воздействию конвульсантов; Б - мощный эпилептический очаг в зоне 1, вызванный аппликацией ацетилхолина с прозерином, и трансформация эпилептической активности в зонах 2 и 3 под влиянием очага в зоне 1, характер активности в очагах 2 и 3 приближается к характеру активности очага в зоне 1; В - образование комплекса очагов с единым («ацетилхолиновым») характером активности, детерминированным влиянием очага в зоне 1;
Г - распад комплекса эпилептических очагов с единым характером активности и появление разрозненных эпилептических очагов с прежней активностью после подавления детерминированного очага в зоне 1 локальной аппликацией нембутала
43 Закат № 532
ческий комплекс, представляющий собой патологическую (эпилептическую) систему, но и определяет характер активности других очагов и всего комплекса как единой системы. Если подавить с помощью фармакологических средств или хирургически удалить детерминантный очаг, то комплекс распадается и вместо него вновь возникают отдельные эпилептические очаги.
20.5.3. Возникновение и деятельность патологической детерминанты
Детерминанта может объединять структуры ЦНС в патологическую систему и определять характер активности этих структур и системы в целом при условии, если ее влияния способны преодолеть механизмы регуляции подчиняемых ей структур. Такую способность приобретает гиперактивное образование ЦНС, продуцирующее достаточно мощную функциональную посылку. В большинстве случаев гиперактивацию данного образования осуществляет возникший в нем генератор. Ослабление по каким-либо причинам механизмов регуляции тех структур, которые воспринимают влияния детерминанты, способствует реализации этих влияний. Так, в формирование эпилептической системы в виде комплекса эпилептических очагов (см. рис. 191) вовлекаются прежде всего те зоны коры головного мозга, которые были изменены под влиянием малых доз конвульсантов (зоны 2 и 3); зона 4, не подвергавшаяся воздействию конвульсантов, осталась невовлеченной в комплекс.
На ранних стадиях развития нервных расстройств патологическая детерминанта активируется специфическими модальными стимулами, т. е. раздражениями, которые адекватны для образования ЦНС, ставшего детерминантой (например, световыми раздражениями, если детерминантой являются образования в системе зрительного анализатора, болевыми - если детерминанта возникла в системе болевой чувствительности и пр.). Эта закономерность распространяется и на расстройства высшей нервной деятельности, на невротические реакции: их детерминанта облегченно активируется при действии тех раздражителей, которые обусловили ее образование (например, те же конфликтные невроти-зирующие ситуации и пр.). Указанные особенности определяют специфику провоцирующих воздействий, вызывающих приступы при соот-
ветствующих нервных расстройствах. На поздних стадиях детерминанта может активироваться стимулами различной модальности, в связи с чем приступы могут провоцироваться разными воздействиями. Кроме того, патологическая детерминанта может активироваться спонтанно в связи со спонтанной активацией генератора.
Отделы ЦНС, испытывающие длительное влияние патологической детерминанты, с течением времени могут сами становиться детерминантами. Вначале такая вторичная детерминанта зависима от первичной: она исчезает, если ликвидируется первичная детерминанта. В дальнейшем вторичная детерминанта может приобрести самостоятельное патогенетическое значение. Обычно вторичной патологической детерминантой становится следующее звено той же патологической системы. Но ею может быть образование, относящееся к другой физиологической системе; в таком случае из этой физиологической системы формируется новая патологическая система. Иногда вторичная детерминанта оказывается более сильной, чем первичная, и становится ведущей. Установление первичной и вторичной детерминант имеет важное значение для понимания патогенетических особенностей нервных расстройств, их правильной диагностики и патогенетической терапии.
Патологическая детерминанта является наиболее резистентной частью патологической системы. При подавлении патологической системы или при ее естественной ликвидации детерми-нантная структура сохраняется еще тогда, когда другие образования системы уже нормализовались и вышли из ее состава («детерминанта умирает последней»). При восстановлении патологической системы под влиянием новых патогенных воздействий раньше других активируется детерминантная структура («детерминанта воскресает первой»), которая способствует восстановлению патологической системы.
20.6. ПАТОЛОГИЧЕСКАЯ СИСТЕМА
20.6.1. Понятие и общая характеристика
Патологическая система - новая патодинами-ческая организация, возникающая в ЦНС в условиях повреждения, деятельность которой имеет биологически отрицательное значение (Г. Н.
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
Крыжановский). Главным биологическим признаком патологической системы является ее ди-задаптивное или прямое патогенное значение для организма. Этот признак существенным образом отличает патологическую систему от физиологической системы, деятельность которой имеет адаптивное значение и направлена на достижение полезного для организма результата.
В одних случаях патологическая система возникает в результате гиперактивации и выхода из-под контроля физиологической системы, в других - путем вовлечения поврежденных и неповрежденных образований ЦНС в новую, не существовавшую ранее структурно-функциональную организацию.
Возникновение патологической системы представляет собой следующий этап эндогенизации патологического процесса и механизм его дальнейшего развития. Формирование и деятельность патологической системы относятся к разряду типовыхпатологических процессов, реализующихся на уровне системных отношений.
Наглядным примером деятельности патологической системы является патологический че-сательный рефлекс. Он возникает при создании генератора в брахиальном отделе спинального аппарата чесательного рефлекса. В этих условиях данный аппарат становится .патологической цетерминантой, которая превращает физиологический чесательный рефлекс в патологический. Животное начинает расчесывать задней лапой зону проекции рефлекса на передней конечности. Эти расчесывания возникают спонтанно. С течением времени, по мере развития патологической системы, они становятся все более частыми, продолжительными и ожесточенными и могут завершаться раздиранием тканей. Животное не в состоянии прекратить эти расчесывания, несмотря на их бесполезность и вредящий эффект. Подобного рода неукротимое насильственное поведение наблюдается при многих формах патологии нервной системы у человека.
20.6.2. Структурно-функциональная организация и особенности деятельности патологической системы
На рис. 192 представлена принципиальная схема организации патологической системы. Ключевым системоорганизующим и управляющим звеном является патологическая детерми-
нанта с ее механизмом гиперактивации в виде генератора (блок Г-Д). Промежуточные (блок П) и центральные эфферентные звенья (блок ЦЭ) развивают деятельность, которая соответствует особенностям активности патологической детерминанты. Если патологическая система имеет выход на периферию, то в ее структуру входит и периферический орган, который становится органом-мишенью (блок ОМ). В этом случае деятельность патологической системы проявляется в виде измененной функции органа - патологического эффекта (блок ПЭф). Если конечным звеном патологической системы являются структуры мозга, то ее эффект выражается в нарушении соответствующих функций мозга.
От всех звеньев патологической системы идут обратные отрицательные связи к тем же звеньям и к детерминанте. Однако в отличие от физиологической системы, где подобные связи регулируют деятельность системы, в патологической системе они функционально неэффективны, так как не корригируют (или плохо корригируют) патологическую детерминанту, которая вследствие недостаточности тормозных механизмов выходит из-под контроля. Тормозные механизмы относительно недостаточны и в других отделах патологической системы. Поэтому система в целом практически выходит из-под общего ин-тегративного контроля ЦНС. Наряду с этим, благодаря постоянной активности, положительные связи между частями патологической системы упрочиваются, проведение возбуждения по этим связям облегчается. Вследствие этогос течением времени патологическая система становится все более резистентной к регулирующим влияниям со стороны антисистемы и мозга и в целом к лечебным воздействиям. Она работает по жес-ткопрограммному принципу,реализуя усиленные влияния патологической детерминанты.
На ранних стадиях процесса патологическая система вслед за патологической детерминантои активируется модально специфическими для нее раздражителями, на поздних стадиях она может активироваться различными, в том числе случайными, стимулами, а также спонтанно. Поэтому на поздних стадиях приступы, характерные для деятельности данной патологической системы (например, эпилептические припадки, эмоциональные аффекты, приступы боли и пр.), могут провоцироваться различными раздражениями, возникать спонтанно, становясь все бо-
Глава 20 / ПАТОФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
1111 11 И 11
г-д | п | 1— | цэ ?~ | t ° | м | Г» | ф | ||
TfTt*-' | f |
Рис. 192. Принципиальная схема организации патологической системы; Г-Д - патологическая детерминанта с генератором патологически усиленного возбуждения; П - промежуточные центральные звенья; ЦЭ - центральные эфферентные звенья; ОМ -орган-мишень; ПЭф - конечный патологический эффект. Стрелки с белыми треугольниками - возбуждающие связи: стрелки с черными треугольниками - тормозные связи; перечеркнутые двумя чертами черные треугольники - глубокая недостаточность тормозных связей, одной чертой - относительная недостаточность
лее частыми, продолжительными и интенсивными.
В начальной стадии патологическая система зависима от патологической детерминанты, она активируется при возбуждении детерминанты и исчезает при ликвидации детерминанты. На поздних стадиях вследствие упрочения структуры патологической системы последняя менее зависима от первичной детерминанты и может продолжать действовать и после удаления детерминанты.
20.6.3. Патогенетическое значение патологической системы
Патологические системы лежат в основе разнообразных нервных расстройств, относящихся к различным сферам деятельности нервной системы, поэтому их образование имеет значение практически универсального патогенетического механизма.
Деятельность патологической системы клинически выражается в виде нейропатологического синдрома или симптомов. Каждый синдром имеет свою патологическую систему. Простые, линейные патологические системы проявляются в виде симптомов или мономорфных синдромов. Примером сравнительно простой патологической системы является патологическая система описанного выше патологического чесательного рефлекса. Многозвеньевые, разветвленные патологические системы служат патогенетической ос-
новой сложных полиморфных синдромов. Последние могут быть также выражением комплекса различных патологических систем, имеющих общую первичную патологическую детерминанту. В качестве примера таких патологических систем можно привести паркинсонизм, эмоционально-поведенческие расстройства и др.
Последовательно реализующаяся патогенетическая триада «генератор - патологическая детерминанта - патологическая система» является эндогенным механизмом возникновения различных нервных расстройств, проявляющихся в виде соответствующих нейропатологических синдромов.
Создание генераторов в определенных, патогенетически значимых для нейропатологических синдромов структур ЦНС делает эти структуры гиперактивными, вследствие чего они приобретают значение патологических детерминант. Клиническим проявлением деятельности этих патологических систем служат соответствующие нейропатологические синдромы. Это положение лежит в основе воспроизведения экспериментальных моделей различных нейропатологических синдромов: центральных болей спинального происхождения (генератор в дорзальных рогах спинного мозга); невралгии тройничного нерва (генератор в каудальном ядре тройничного нерва); таламического болевого синдрома (генератор в интраламинарном ядре таламуса); вестибулопа-тии - крыса вертится вокруг продольной оси своего тела (генератор в вестибулярном ядре Дей-терса); фотогенной эпилепсии (генератор в системе зрительного анализатора - в латеральном коленчатом теле); патологически удлиненного сна (генератор в сомногенной системе); сложного психоаффективного патологического состояния (генератор в эмоциогенной системе); патологическое пищедобывательное поведение типа насильственной формы поведения (генератор в латеральном гипоталамусе); паркинсонического синдрома (генератор в хвостатых ядрах).
Один из важных патогенетических механизмов функционирования патологической системы заключается в том, что она подавляет активность физиологических систем, в том числе и антисистем, и компенсаторные процессы. Этот механизм способствует развитию патологического процесса, особенно при продолжающемся действии этиологического фактора. Он приводит в конечном счете к дезорганизации деятельности
Часть III. ПАТОФИЗИОЛОГИЯ ОРГАНОВ И СИСТЕМ
ЦНС, весьма значительной на поздних стадиях процесса.